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Inference on breakdown frontiers
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Given a set of baseline assumptions, a breakdown frontier is the boundary be-
tween the set of assumptions which lead to a specific conclusion and those which
do not. In a potential outcomes model with a binary treatment, we consider two
conclusions: First, that ATE is at least a specific value (e.g., nonnegative) and sec-
ond that the proportion of units who benefit from treatment is at least a specific
value (e.g., at least 50%). For these conclusions, we derive the breakdown fron-
tier for two kinds of assumptions: one which indexes relaxations of the baseline
random assignment of treatment assumption, and one which indexes relaxations
of the baseline rank invariance assumption. These classes of assumptions nest
both the point identifying assumptions of random assignment and rank invari-
ance and the opposite end of no constraints on treatment selection or the depen-
dence structure between potential outcomes. This frontier provides a quantita-
tive measure of the robustness of conclusions to relaxations of the baseline point
identifying assumptions. We derive

√
N-consistent sample analog estimators for

these frontiers. We then provide two asymptotically valid bootstrap procedures
for constructing lower uniform confidence bands for the breakdown frontier. As
a measure of robustness, estimated breakdown frontiers and their corresponding
confidence bands can be presented alongside traditional point estimates and con-
fidence intervals obtained under point identifying assumptions. We illustrate this
approach in an empirical application to the effect of child soldiering on wages. We
find that sufficiently weak conclusions are robust to simultaneous failures of rank
invariance and random assignment, while some stronger conclusions are fairly
robust to failures of rank invariance but not necessarily to relaxations of random
assignment.
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1. Introduction

Traditional empirical analysis combines the observed data with a set of assumptions to
draw conclusions about a parameter of interest. Breakdown frontier analysis reverses
this ordering. It begins with a fixed conclusion and a set of baseline assumptions and
asks, “What are the weakest assumptions needed to draw that conclusion, given the ob-
served data?” For example, consider the impact of a binary treatment on some outcome
variable. The traditional approach might assume random assignment, point identify the
average treatment effect (ATE), and then report the obtained value. The breakdown fron-
tier approach instead begins with a conclusion about ATE, like “ATE is positive,” and re-
ports the weakest assumption—relative to random assignment—on the relationship be-
tween treatment assignment and potential outcomes needed to obtain this conclusion,
when such an assumption exists. When more than one kind of assumption is consid-
ered, this approach leads to a curve, representing the weakest combinations of assump-
tions which lead to the desired conclusion. This curve is the breakdown frontier.

At the population level, the difference between the traditional approach and the
breakdown frontier approach is a matter of perspective: an answer to one question is an
answer to the other. This relationship has long been present in the literature initiated by
Manski on partial identification (e.g., see Manski (2007) or Section 3 of Manski (2013)).
In finite samples, however, which approach one chooses has important implications for
how one does statistical inference. Specifically, the traditional approach estimates the
parameter or its identified set. Here we instead estimate the breakdown frontier. The tra-
ditional approach then performs inference on the parameter or its identified set. Here
we instead perform inference on the breakdown frontier. Thus the breakdown frontier
approach puts the weakest assumptions necessary to draw a conclusion at the center of
attention. Consequently, by construction, this approach avoids the nontight bounds cri-
tique of partial identification methods (e.g., see Section 7.2 of Ho and Rosen (2017)). One
distinction is that the traditional approach may require inference on a partially identi-
fied parameter. The breakdown frontier approach, however, only requires inference on
a point identified object.

The breakdown frontier we study generalizes the concept of an “identification break-
down point” introduced by Horowitz and Manski (1995), a one-dimensional breakdown
frontier.1 Their breakdown point was further studied and generalized by Stoye (2005,
2010). Our emphasis on inference on the breakdown frontier follows Kline and Santos

1The identification breakdown point is distinct from the breakdown point introduced earlier by Hampel
(1968, 1971) in the robust statistics literature that began with Huber (1964); also see Donoho and Huber
(1983). Horowitz and Manski (1995) gave a detailed comparison of the two concepts. Throughout this paper
we use the term “breakdown” in the same sense as Horowitz and Manski’s identification breakdown point.
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(2013), who proposed doing inference on a breakdown point. Finally, our focus on mul-
tidimensional frontiers builds on the graphical sensitivity analysis of Imbens (2003) and
the multidimensional sensitivity analysis of Manski and Pepper (2018). We discuss these
papers and others in detail in Appendix A.

The breakdown frontier approach

The breakdown frontier approach requires six main steps: (a) specify a parameter of in-
terest, (b) specify a set of baseline assumptions, (c) define a class of assumptions in-
dexed by a sensitivity parameter which deliver a nested sequence of identified sets, with
the baseline assumptions obtained at one extreme and the no assumptions bounds ob-
tained at the other, (d) characterize identified sets for the parameter of interest as a func-
tion of the sensitivity parameter, (e) use those identified sets to define the breakdown
frontier for a conclusion of interest, and (f) develop estimation and inference proce-
dures for that frontier based on its characterization.

In principle this analysis can be done for a general class of models, for example,
by using the general identification analysis in Chesher and Rosen (2017) or Torgovitsky
(2019) for step (d), and then applying general tools for nonparametric estimation and
inference for step (f). While such a general analysis is an important next step for future
work, in this paper we focus on just one important and widely used model: the poten-
tial outcomes model with a binary treatment. By focusing on a single concrete model,
we can clearly illustrate how to do the six main steps (a)–(f) required for a breakdown
frontier analysis in any model. While the mathematical analysis will differ from model
to model, the general ideas and approach do not.

In the rest of this section and this paper, we use the binary treatment potential out-
comes model to explain and illustrate the breakdown frontier approach. Our main pa-
rameter of interest is the proportion of units who benefit from treatment. Under random
assignment of treatment and rank invariance, this parameter is point identified. One
may be concerned, however, that these two assumptions are too strong. We relax rank
invariance by supposing that there are two types of units in the population: one type
for which rank invariance holds and another type for which it may not. The proportion
t of the second type measures the relaxation of rank invariance. We relax random as-
signment using a propensity score distance c ≥ 0 as in our previous work, Masten and
Poirier (2018a). We give more details on both of these relaxations in Section 2. We derive
the identified set for P(Y1 >Y0) as a function of (c� t). For a specific conclusion, such as
P(Y1 >Y0)≥ 0�5, this identification result defines a breakdown frontier.

Figure 1 illustrates this breakdown frontier. The horizontal axis measures c, the relax-
ation of the random assignment assumption. The vertical axis measures t, the relaxation
of rank invariance. The origin represents the baseline point identifying assumptions of
random assignment and rank invariance. Points along the vertical axis represent ran-
dom assignment paired with various relaxations of rank invariance. Points along the
horizontal axis represent rank invariance paired with various relaxations of random as-
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Figure 1. An example breakdown frontier, partitioning the space of assumptions into the set
for which our conclusion of interest holds (the robust region) and the set for which our evidence
is inconclusive.

signment. Points in the interior of the box represent relaxations of both assumptions.
The points in the lower left region are pairs of assumptions (c� t) such that the data al-
low us to draw our desired conclusion: P(Y1 > Y0) ≥ 0�5. We call this set the robust re-
gion. Specifically, no matter what value of (c� t) we choose in this region, the identified
set for P(Y1 >Y0) always lies completely above 0�5. The points in the upper right region
are pairs of assumptions that do not allow us to draw this conclusion. For these pairs
(c� t), the identified set for P(Y1 > Y0) contains elements smaller than 0�5. The bound-
ary between these two regions is precisely the breakdown frontier. The area under the
breakdown frontier—the robust region—is a quantitative measure of robustness.

The breakdown frontier is similar to the classical Pareto frontier from microeco-
nomic theory: It shows the trade-offs between different assumptions in drawing a spe-
cific conclusion. For example, consider Figure 1. If we are at the top left point, where the
breakdown frontier intersects the vertical axis, then any relaxation of random assign-
ment requires strengthening the rank invariance assumption in order to still be able to
draw our desired conclusion. The breakdown frontier specifies the precise marginal rate
of substitution between the two assumptions.

Figure 2 illustrates how the breakdown frontier changes as our conclusion of interest
changes. Specifically, consider the conclusion that

P(Y1 >Y0)≥ p

for five different values for p. The figure shows the corresponding breakdown frontiers.
As p increases toward one, we are making a stronger claim about the true parameter,
and hence the set of assumptions for which the conclusion holds shrinks. For strong
enough claims, the claim may be refuted even with the strongest assumptions possi-
ble. Conversely, as p decreases toward zero, we are making progressively weaker claims
about the true parameter, and hence the set of assumptions for which the conclusion
holds grows larger.



Quantitative Economics 11 (2020) Inference on breakdown frontiers 45

Figure 2. Example breakdown frontiers for the claim P(Y1 >Y0)≥ p, for five different values of
p.

Under the strongest assumptions of (c� t)= (0�0), the parameter P(Y1 >Y0) is point
identified. Letp0�0 denote its value. The valuep0�0 is often strictly less than 1. In this case,
any p ∈ (p0�0�1] yields a degenerate breakdown frontier: This conclusion is refuted un-
der the point identifying assumptions. Even if p0�0 < p, the conclusion P(Y1 > Y0) ≥ p
may still be correct. This follows since, for strictly positive values of c and t, the identi-
fied sets for P(Y1 > Y0) do contain values larger than p0�0. But they also contain values
smaller than p0�0. Hence there do not exist any assumptions for which we can draw the
desired conclusion.

We provide additional interpretation of population breakdown frontiers in Section 2,
Section 4, and Appendix E in the Online Supplemental Material (Masten and Poirier
(2020)). We discuss estimation and inference in Section 3 and Appendix D in the Online
Supplemental Material. Finally, we illustrate how our results can be used as a sensitivity
analysis within a larger empirical study in Section 4. In that section we also provide a
detailed and largely self-contained guide to implementing our approach.

2. Model and identification

In this section we study identification of the standard potential outcomes model with
a binary treatment. We focus on two key assumptions: random assignment and rank
invariance. We discuss how to relax these two assumptions and derive identified sets
for various parameters under these relaxations. While there are many different ways to
relax these assumptions, our goal is to illustrate the breakdown frontier methodology,
and hence we focus on just one kind of relaxation for each assumption.

Setup

Let Y1 and Y0 denote the unobserved potential outcomes. LetX ∈ {0�1} be an observed
binary treatment. Let W ∈ supp(W ) be a vector of observed covariates. This vector may
contain discrete covariates, continuous covariates, or both. We observe the scalar out-
come variable

Y =XY1 + (1 −X)Y0� (1)

Let px|w = P(X = x | W = w) denote the observed propensity score. We maintain the
following assumption on the joint distribution of (Y1�Y0�X�W ) throughout.
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Assumption A1. For each x�x′ ∈ {0�1} and w ∈ supp(W ):

1. Yx |X = x′,W =w has a strictly increasing and continuous distribution function on
its support, supp(Yx |X = x′�W =w).

2. supp(Yx | X = x′�W = w) = supp(Yx | W = w) = [y
x
(w)� yx(w)] where −∞ ≤

y
x
(w) < yx(w)≤ ∞.

3. px|w > 0.

Via Assumption A1.1, we restrict attention to continuously distributed potential out-
comes. Assumption A1.2 states that the support of Yx |X = x′, W = w does not depend
on x′, and is a possibly infinite closed interval. This assumption implies that the end-
points y

x
(w) and yx(w) are point identified. We maintain Assumption A1.2 for simplicity,

but it can be relaxed using similar derivations as in Masten and Poirier (2016). Assump-
tion A1.3 is an overlap assumption.

Define the conditional rank random variables U0 = FY0|W (Y0 | W ) and U1 =
FY1|W (Y1 | W ). Since FY1|W (· | w) and FY0|W (· | w) are strictly increasing (by Assump-
tion A1.1), U0 | W and U1 | W are uniformly distributed on [0�1]. The value of unit i’s
conditional rank random variable Ux tells us where unit i lies in the distribution of
Yx |W .

Identifying assumptions

It is well known that the joint conditional distribution of potential outcomes (Y1�Y0) |W
is point identified under two assumptions:

1. Conditional random assignment of treatment:X ⊥⊥ Y1 |W andX ⊥⊥ Y0 |W .

2. Conditional rank invariance: U1 =U0 almost surely.

Note that the joint conditional independence assumptionX ⊥⊥ (Y1�Y0) |W provides no
additional identifying power beyond the marginal conditional independence assump-
tion stated above. Any functional of FY1�Y0|W is point identified under these random as-
signment and rank invariance assumptions. The goal of our identification analysis is to
study what can be said about such functionals when one or both of these point iden-
tifying assumptions fails. To do this, we define two classes of assumptions: one which
indexes the relaxation of random assignment of treatment, and one which indexes the
relaxation of rank invariance. These classes of assumptions nest both the point identi-
fying assumptions of random assignment and rank invariance and the opposite end of
no constraints on treatment selection or the dependence structure between potential
outcomes.

A key feature of the relaxations we use is that they are “orthogonal” in the sense that
we can relax each of the two assumptions separately: The amount by which we relax one
assumption does not constrain the amount by which we can relax the other assump-
tion. This feature is important since a key goal of our analysis is to quantify the trade-off
between relaxations of these two assumptions.

We begin with our measure of distance from conditional independence.
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Definition 1. Let c be a scalar between 0 and 1. Say X is conditionally c-dependent
with Yx givenW if

sup
y∈supp(Yx|W=w)

∣∣P(X = x | Yx = y�W =w)− P(X = x |W =w)∣∣≤ c (2)

for x ∈ {0�1} and w ∈ supp(W ).

For c = 0, conditional c-dependence implies X ⊥⊥ Y1 |W and X ⊥⊥ Y0 |W . For c > 0,
however, it allows for some deviations from conditional independence. Specifically, it
allows the unobserved treatment assignment probability P(X = 1 | Yx = y�W =w) to be
at most c probability units away from the observed propensity score p1|w. We discuss
one way to interpret the magnitude of c on page 68. We give further discussion in our
previous paper, Masten and Poirier (2018a).

Our second class of assumptions constrains the dependence structure between Y1

and Y0, conditional onW . By Sklar’s theorem (Sklar (1959)), write

FY1�Y0|W (y1� y0 |w)= C(FY1|W (y1 |w)�FY0|W (y0 |w) |w)�
where C(·� · | w) is a unique conditional copula function. See Nelsen (2006) for an
overview of copulas and Fan and Patton (2014) for a survey of their use in econometrics.
Restrictions on C constrain the dependence between potential outcomes. For example,
if

C(u1�u0 |w)= min{u1�u0}�
then U1 = U0 almost surely. Thus conditional rank invariance holds. In this case the
potential outcomes Y1 and Y0 are sometimes called conditionally comonotonic and
min{·� ·} is called the comonotonicity copula. At the opposite extreme, when C is an ar-
bitrary copula, the dependence between Y1 | W and Y0 | W is constrained only by the
Fréchet–Hoeffding bounds, which state that

max{u1 + u0 − 1�0} ≤ C(u1�u0 |w)≤ min{u1�u0}�
We next define a class of assumptions which includes both conditional rank invariance
and no assumptions on the dependence structure as special cases.

Definition 2. The potential outcomes (Y1�Y0) satisfy (1−t)-percent conditional rank
invariance givenW if for all w ∈ supp(W ) their conditional copula C satisfies

C(u1�u0 |w)= (1 − t)min{u1�u0} + tH(u1�u0 |w)� (3)

whereH is some conditional copula.

This assumption says that within each covariate cell the population is a mixture of
two parts: In one part, rank invariance holds. This part contains 100(1 − t)% of the over-
all population in that cell. In the second part, rank invariance may fail in an arbitrary,
unknown way. Hence, for this part, the dependence structure is unconstrained beyond
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the Fréchet–Hoeffding bounds. This part contains 100 · t% of the overall population in
that cell. Thus for t = 0 the usual conditional rank invariance assumption holds, while
for t = 1 no assumptions are made about the dependence structure. For t ∈ (0�1), we
obtain a kind of partial conditional rank invariance. Note that by exercise 2.3 on page 14
of Nelsen (2006), a mixture of copulas like that in equation (3) is also a copula.

To see this mixture interpretation formally, let T follow a Bernoulli distribution with
P(T = 1 | W = w) = t, where T ⊥⊥ Y1 | W and T ⊥⊥ Y0 | W , but T is not independent of
(Y1�Y0) | W jointly. This implies that T has an effect on the dependence structure of
(Y1�Y0) |W but not on their conditional marginal distributions. Suppose that individu-
als for whom Ti = 1 have an arbitrary dependence structure, while those with Ti = 0 have
conditionally rank invariant potential outcomes. Then by the law of total probability,

FY1�Y0|W (y1� y0 |w)
= (1 − t)FY1�Y0|W�T (y1� y0 |w�0)+ tFY1�Y0|W�T (y1� y0 |w�1)

= (1 − t)C(FY1|W�T (y1 |w�0)�FY0|W�T (y0 |w�0) |w�0
)

+ tC(FY1|W�T (y1 |w�1)�FY0|W�T (y0 |w�1) |w�1
)

= (1 − t)min
{
FY1|W (y1 |w)�FY0|W (y0 |w)}+ tH(FY1|W (y1 |w)�FY0|W (y0 |w) |w)�

Our approach to relaxing rank invariance is an example of a more general approach.
In this approach we take a weak assumption and a stronger assumption and use them
to define a continuous class of assumptions by considering the population as a mix-
ture of two subpopulations. The weak assumption holds in one subpopulation while the
stronger assumption holds in the other subpopulation. The mixing proportion t con-
tinuously spans the two distinct assumptions we began with. This approach was used
earlier by Horowitz and Manski (1995) in their analysis of the contaminated sampling
model. While this general approach may not always be the most natural way to relax an
assumption, it is often available and hence can be used to facilitate breakdown frontier
analyses.

Throughout the rest of this section we impose both conditional c-dependence and
(1−t)-percent conditional rank invariance givenW .

Assumption A2. The following hold:

1. X is conditionally c-dependent with the potential outcomes Yx given W , where for
all w ∈ supp(W )we have c <min{p1|w�p0|w}.

2. (Y1�Y0) satisfies (1−t)-percent conditional rank invariance given W , where t ∈
[0�1].

For brevity we focus on the case c <min{p1|w�p0|w} throughout this paper. This al-
lows us to explain the key ideas while keeping the notation and derivations relatively
simple. All of our results, however, can be relaxed to the general case where c ∈ [0�1].
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Partial identification under relaxations of independence and rank invariance

We next study identification under the relaxations of full independence and rank invari-
ance defined above. We begin by briefly recalling results from Masten and Poirier (2018a)
on identification of the conditional quantile treatment effect CQTE(τ | w) = QY1|W (τ |
w) − QY0(τ | w), the conditional average treatment effect CATE(w) = E(Y1 − Y0 | W =
w), and the conditional marginal cdfs of potential outcomes under c-dependence. We
then derive new identification results for the distribution of treatment effects (DTE),
FY1−Y0(z), and its related parameter P(Y1 >Y0).

In Masten and Poirier (2018a), we showed that Assumption A1 and Assumption A2.1
imply that

F
c
Yx|W (y |w)= min

{
FY |X�W (y | x�w)px|w

px|w − c �
FY |X�W (y | x�w)px|w + c

px|w + c
}

(4)

and

FcYx|W (y |w)= max
{
FY |X�W (y | x�w)px|w

px|w + c �
FY |X�W (y | x�w)px|w − c

px|w − c
}

(5)

are functionally sharp bounds on the cdf FYx|W . Let

Q
c
Yx|W (τ |w)=QY |X�W

(
τ+ c

px|w
min{τ�1 − τ}

∣∣∣ x�w) (6)

denote the inverse of the cdf bound (5) and

Qc
Yx|W (τ |w)=QY |X�W

(
τ− c

px|w
min{τ�1 − τ}

∣∣∣ x�w) (7)

denote the inverse of the cdf bound (4). We showed that the identified set for CQTE(τ |w)
is2

[
CQTE(τ� c |w)�CQTE(τ� c |w)]

≡ [Qc
Y1|W (τ |w)−QcY0|W (τ |w)�QcY1|W (τ |w)−Qc

Y0|W (τ |w)]� (8)

We further showed that, assuming E(|Y | | X = x�W = w) < ∞ for x ∈ {0�1} and w ∈
supp(W ), the identified set for CATE(w) is

[
CATE(c |w)�CATE(c |w)]≡ [∫ 1

0
CQTE(τ� c |w)dτ�

∫ 1

0
CQTE(τ� c |w)dτ

]
� (9)

We use these conditional cdf bounds in our DTE bounds. Bounds on the correspond-
ing unconditional parameters, like ATE = E[CATE(W )], can be obtained by integrat-
ing the conditional bounds over the marginal distribution of W . These results are un-
changed if we further impose Assumption A2.2. That is, assumptions on rank invariance

2In that paper we also extended the bounds in equations (4)–(9) to the c ≥ min{p1|w�p0|w} case. As noted
earlier, here we focus on the c <min{p1|w�p0|w} case for brevity.
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have no identifying power for functionals of the marginal distributions of potential out-
comes.

We next derive the identified set for the distribution of treatment effects, the cdf

DTE(z)= P(Y1 −Y0 ≤ z)�

To do this, we first derive the identified set for the conditional distribution of treatment
effects (CDTE), the cdf

CDTE(z |w)= P(Y1 −Y0 ≤ z |W =w)�

By the law of iterated expectations,

DTE(z)= E
[
CDTE(z |W )]�

Thus we will obtain the identified set for the DTE by averaging bounds for the CDTE.
While the ATE only depends on the conditional marginal distributions of potential out-
comes, the CDTE depends on the joint distribution of (Y1�Y0) |W . Consequently, as we
will see below, the identified set for the CDTE depends on the value of t.

For any z ∈ R, define Yz(w) = [y
1
(w)� y1(w)] ∩ [y

0
(w) + z� y0(w) + z]. Note that

supp(Y1 −Y0 |W =w)⊆ [y
1
(w)− y0(w)� y1(w)− y

0
(w)]. Let z be an element of [y

1
(w)−

y0(w)� y1(w)− y0
(w)] such that Yz(w) is nonempty. If z is such that Yz(w) is empty, then

the CDTE is either 0 or 1 depending solely on the relative location of the two supports,
which is point identified by Assumption A1.2. In this case, define CDTE(z� c� t | w) and
CDTE(z� c� t | w) to equal this point identified value. If z > y1(w) − y

0
(w), define these

CDTE bounds to equal 1. If z < y
1
(w)− y0(w), define these CDTE bounds to equal 0.

If Yz(w) is nonempty, define

CDTE(z� c� t |w) = (1 − t)P(Qc
Y1|W (U |w)−QcY0|W (U |w)≤ z)

+ t
(

1 + min
{

inf
y∈Yz(w)

(
F
c
Y1|W (y |w)− FcY0|W (y − z |w))�0

})
�

CDTE(z� c� t |w) = (1 − t)P(QcY1|W (U |w)−Qc
Y0|W (U |w)≤ z)

+ tmax
{

sup
y∈Yz(w)

(
FcY1|W (y |w)− FcY0|W (y − z |w))�0

}
�

where U ∼ Unif[0�1]. The following result shows that (a) these are sharp bounds on the
CDTE, and (b) the integral of these bounds over the marginal distribution of W yields
sharp bounds on the DTE, defined as P(Y1 −Y0 ≤ z).

Theorem 1 (DTE bounds). Suppose the joint distribution of (Y�X�W ) is known. Sup-
pose Assumptions A1 and A2 hold. Let z ∈ R. Then the identified set for P(Y1 − Y0 ≤ z |
W =w) is [

CDTE(z� c� t |w)�CDTE(z� c� t |w)]�
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Moreover, the identified set for P(Y1 −Y0 ≤ z) is[
DTE(z� c� t)�DTE(z� c� t)

]
=
[∫

supp(W )
CDTE(z� c� t |w)dFW (w)�

∫
supp(W )

CDTE(z� c� t |w)dFW (w)
]
�

The bound functions DTE(z� ·� ·) and DTE(z� ·� ·) are continuous and monotonic in
both arguments. When both conditional random assignment (c = 0) and conditional
rank invariance (t = 0) hold, these bounds collapse to a single point and we obtain point
identification. If we impose conditional random assignment (c = 0) but allow arbitrary
dependence between Y1 and Y0 (t = 1) then we obtain a conditional version of the well
known Makarov (1982) bounds. For example, see equation (2) of Fan and Park (2010).
DTE bounds have been studied extensively by Fan and coauthors; see the introduction
of Fan, Guerre, and Zhu (2017) for a recent and comprehensive discussion of this litera-
ture.

Theorem 1 immediately implies that the identified set for P(Y1 −Y0 > z) is

P(Y1 −Y0 > z) ∈ [1 − DTE(z� c� t)�1 − DTE(z� c� t)
]
�

In particular, setting z = 0 yields the proportion who benefit from treatment, P(Y1 >Y0).
Thus Theorem 1 allows us to study the sensitivity of this parameter to relaxations of full
conditional independence and conditional rank invariance.

Finally, notice that all of the bounds and identified sets discussed in this sec-
tion are analytically tractable and depend on just three functions identified from the
population—the conditional cdf FY |X�W , the propensity scores px|w, and the marginal
distribution of covariates FW . This suggests a plug-in estimation approach which we
study in Section 3.

Breakdown frontiers

We now formally define the breakdown frontier, which generalizes the scalar breakdown
point to multiple assumptions or dimensions. We also define the robust region, the area
below the breakdown frontier. These objects can be defined for different conclusions
about different parameters in various models. For concreteness, however, we focus on
just a few conclusions about P(Y1 − Y0 > z) and ATE in the potential outcomes model
discussed above.

We begin with the conclusion that P(Y1 −Y0 > z)≥ p for a fixed p ∈ [0�1] and z ∈R.
For example, if z = 0 and p = 0�5, then this conclusion states that at least 50% of peo-
ple have higher outcomes with treatment than without. If we impose conditional ran-
dom assignment and conditional rank invariance, then P(Y1 − Y0 > z) is point identi-
fied, and hence we can directly check whether this conclusion holds. But the breakdown
frontier approach asks: Relative to these baseline assumptions, what are the weakest
assumptions that allow us to draw this conclusion, given the observed distribution of
(Y�X�W )? Specifically, since larger values of c and t correspond to weaker assumptions,
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what are the largest values of c and t such that we can still definitively conclude that
P(Y1 −Y0 > z)≥ p?

We answer this question in two steps. First, we gather all values of c and t such that
the conclusion holds. We call this set the robust region. Since the lower bound of the
identified set for P(Y1 −Y0 > z) is 1 − DTE(z� c� t) (by Theorem 1), the robust region for
the conclusion that P(Y1 −Y0 > z)≥ p is

RR(z�p)= {(c� t) ∈ [0�1]2 : 1 − DTE(z� c� t)≥ p}
= {(c� t) ∈ [0�1]2 : DTE(z� c� t)≤ 1 −p}�

The robust region is simply the set of all (c� t) which deliver an identified set for
P(Y1 − Y0 > z) which lies on or above p. See pages 60–61 of Stoye (2005) for similar

definitions in the scalar assumption case in a different model. Since DTE(z� c� t) is in-
creasing in c and t, the robust region will be empty if DTE(z�0�0) > 1−p, and nonempty

if DTE(z�0�0)≤ 1−p. That is, if the conclusion of interest does not hold under the point
identifying assumptions, it certainly will not hold under weaker assumptions. From here
on we only consider the first case, where the conclusion of interest holds under the point
identifying assumptions. That is, we suppose DTE(z�0�0)≤ 1 −p so that RR(z�p) 
= ∅.

Second, the breakdown frontier is the set of points (c� t) on the boundary of the ro-
bust region. Specifically, for the conclusion that P(Y1 >Y0)≥ p, this frontier is the set

BF(p)= {(c� t) ∈ [0�1]2 : DTE(0� c� t)= 1 −p}�
Solving for t in the equation DTE(0� c� t)= 1 −p yields

bf(c�p)= num(c�p)

denom(c)
� (10)

where

num(c�p)= 1 −p−
∫

supp(W )
P
(
Qc
Y1|W (U |w)−QcY0|W (U |w)≤ 0

)
dFW (w)

and

denom(c)= 1 +
∫

supp(W )

[
min
{

inf
y∈Y0(w)

(
F
c
Y1|W (y |w)− FcY0|W (y |w))�0

}
− P
(
Qc
Y1|W (U |w)−QcY0|W (U |w)≤ 0

)]
dFW (w)�

Thus we obtain the following analytical expression for the breakdown frontier as a func-
tion of c:

BF(c�p)= min
{
max
{
bf(c�p)�0

}
�1
}
�

This frontier provides the largest relaxations c and t which still allow us to conclude that
P(Y1 >Y0)≥ p. It thus provides a quantitative measure of robustness of this conclusion
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to relaxations of the baseline point identifying assumptions of conditional random as-
signment and conditional rank invariance. Moreover, the shape of this frontier allows
us to understand the trade-off between these two types of relaxations in drawing our
conclusion.

Here our two relaxations c and t are measured in different units. In general, we can
interpret the trade-off between any two relaxations so long as we can interpret the units
of each relaxation separately. It is not necessary to measure the two relaxations in com-
mon units, although this may sometimes be helpful. This is a common remark when
studying trade-offs. For example, in labor supply models agents trade off leisure hours
for consumption, although time and quantities of goods are measured in fundamentally
different units. Many common rates outside of economics, like kilometers per hour or
beats per minute, also do not have common units.

We next consider breakdown frontiers for ATE. Consider the conclusion that ATE ≥ μ
for some μ ∈R. Analogously to above, the robust region for this conclusion is

RRate(μ)= {(c� t) ∈ [0�1]2 : ATE(c)≥ μ}
and the breakdown frontier is

BFate(μ)= {(c� t) ∈ [0�1]2 : ATE(c)= μ}�
These sets are nonempty if ATE(0) ≥ μ; that is, if our conclusion holds under the point
identifying assumptions. As we mentioned earlier, rank invariance has no identifying
power for ATE, and hence the breakdown frontier is a vertical line at the point

c∗ = inf
{
c ∈ [0�1] : ATE(c)≤ μ}�

This point c∗ is a breakdown point for the conclusion that ATE ≥ μ. Note that continuity
of ATE(·) implies ATE(c∗)= μ. Thus we’ve seen two kinds of breakdown frontiers so far:
The first had nontrivial curvature, which indicates a trade-off between the two assump-
tions. The second was vertical in one direction, indicating a lack of identifying power of
that assumption.

We can also derive robust regions and breakdown frontiers for more complicated
joint conclusions. For example, suppose we are interested in concluding that both
P(Y1 > Y0) ≥ p and ATE ≥ μ hold. Then the robust region for this joint conclusion is
the intersection of the two individual robust regions:

RR(0�p)∩ RRate(μ)�

The breakdown frontier for the joint conclusion is the boundary of this intersected re-
gion. Viewing these frontiers as functions mapping c to t, the breakdown frontier for
this joint conclusion can be computed as the minimum of the two individual frontier
functions.

Above we focused on one-sided conclusions about the parameters of interest. An-
other natural joint conclusion is the two-sided conclusion that P(Y1 − Y0 > z) ≥ p and
P(Y1 −Y0 > z)≤ p, for 0 ≤ p<p≤ 1. No new issues arise here: the robust region for this
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joint conclusion is still the intersection of the two separate robust regions. Keep in mind,
though, that whether we look at a one-sided or a two-sided conclusion is unrelated to
the fact that we use lower confidence bands in Section 3.

Finally, the bootstrap procedures we propose in Section 3 can also be used to do
inference on these joint breakdown frontiers. For simplicity, though, in that section we
focus on the case where we are only interested in the conclusion P(Y1 −Y0 > z)≥ p.

3. Estimation and inference

In this section we study estimation and inference on the breakdown frontier defined
above. The breakdown frontier is a known functional of the conditional cdf of outcomes
given treatment and covariates, the probability of treatment given covariates, and the
marginal distribution of the covariates. Hence we propose nonparametric sample ana-
log estimators of the breakdown frontier. We derive

√
N-consistency and asymptotic

distributional results using a delta method for directionally differentiable functionals.
We then use a bootstrap procedure to construct asymptotically valid lower confidence
bands for the breakdown frontier. We also provide a similar procedure for doing infer-
ence on breakdown points for ATE.

Although we focus on inference on the breakdown frontier, one might also be inter-
ested in doing inference directly on the parameters of interest. If we fix c and t a priori,
then we obtain identified sets for ATE, QTE, and the DTE from Section 2. Our asymp-
totic results may be used as inputs to traditional inference on partially identified pa-
rameters. See Canay and Shaikh (2017) for a survey of this literature. For brevity, in this
section we only state the asymptotic results for breakdown points and frontiers. In Ap-
pendix B.1, we derive the limiting distribution for the following objects: (1) the bounds
on the marginal distributions of potential outcomes conditional on W , (2) the CQTE
bounds, (3) the CATE and ATE bounds, (4) the CDTE under conditional rank invariance
but without full conditional independence, and finally (5) the DTE without either con-
ditional rank invariance or full conditional independence.

We first suppose we observe a random sample of data.

Assumption A3. The random variables {(Yi�Xi�Wi)}Ni=1 are independently and identi-
cally distributed according to the distribution of (Y�X�W ).

We assume the support ofW is discrete. We sketch an approach to handling contin-
uous covariates in Appendix B.2. Note thatW may still be a vector.

Assumption A4. The support ofW is discrete and finite. Let supp(W )= {w1� � � � �wK}.

All parameters of interest are defined as functionals of the underlying parameters
FY |X�W (y | x�w), px|w = P(X = x |W =w), and qw = P(W =w). Let

F̂Y |X�W (y | x�w)=

1
N

N∑
i=1

1(Yi ≤ y)1(Xi = x�Wi =w)

1
N

N∑
i=1

1(Xi = x�Wi =w)
� (11)
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p̂x|w =

1
N

N∑
i=1

1(Xi = x�Wi =w)

1
N

N∑
i=1

1(Wi =w)
� (12)

and

q̂w = 1
N

N∑
i=1

1(Wi =w) (13)

denote the sample analog estimators of these three quantities, which converge uni-
formly to a Gaussian process at a

√
N-rate; see Lemma C1 in Appendix C.

Next consider the bounds (4) and (5) on the marginal distributions of poten-
tial outcomes. These population bounds are a functional φ1 evaluated at (FY |X�W (· |
·� ·)�p(·|·)� q(·)) where p(·|·) denotes the probability px|w as a function of (x�w) ∈ {0�1} ×
supp(W ), and q(·) denotes qw as a function ofw ∈ supp(W ). We estimate these bounds by
a plug-in estimator φ1(F̂Y |X�W (· | ·� ·)� p̂(·|·)� q̂(·)). If this functional is differentiable in an
appropriate sense,

√
N-convergence in distribution of its arguments will carry over to

the functional by the delta method. The type of differentiability we require is Hadamard
directional differentiability, first defined by Shapiro (1990) and Dümbgen (1993), and
further studied in Fang and Santos (2019). We use the functional delta method for
Hadamard directionally differentiable mappings (e.g., Theorem 2.1 in Fang and Santos
(2019)) to show convergence in distribution of our estimators. Such convergence is usu-
ally to a non-Gaussian limiting process. We do not use this distribution to do inference
since obtaining analytical asymptotic confidence bands would be challenging. Instead,
we use a bootstrap procedure to obtain asymptotically valid uniform confidence bands
for our breakdown frontier and associated estimators.

Returning to our population bounds (4) and (5), we estimate these by

F̂
c

Yx|W (y |w)= min
{
F̂Y |X�W (y | x�w)p̂x|w

p̂x|w − c �
F̂Y |X�W (y | x�w)p̂x|w + c

p̂x|w + c
}
�

F̂
c
Yx|W (y |w)= max

{
F̂Y |X�W (y | x�w)p̂x|w

p̂x|w + c �
F̂Y |X(y | x�w)p̂x|w − c

p̂x|w − c
}
�

(14)

Note that these estimators may not perform well when c is close to px|w. In our analysis
we assume c is bounded away from px|w. We show that these estimators converge in
distribution to a nonstandard distribution in Appendix B.1, Lemma 1.

In addition to Assumption A1, we make the following regularity assumptions.

Assumption A5. For each x ∈ {0�1} and w ∈ supp(W ):

1. −∞< y
x
(w) < yx(w) <+∞.

2. FY |X�W (y | x�w) is continuously differentiable everywhere. Its density fY |X�W (y |
x�w) is uniformly continuous in y, uniformly bounded from above, and uniformly
bounded away from zero on supp(Y |X = x�W =w).
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Assumption A5.1 combined with our earlier Assumption A1.2 constrain the poten-
tial outcomes to have compact support. This compact support assumption is not used
to analyze our cdf bounds estimators (14), but we use it later to obtain estimates of
the corresponding quantile function bounds uniformly over their arguments u ∈ (0�1),
which we then use to estimate the bounds on P(QY1|W (U |w)−QY0|W (U |w)≤ z). This
is a well-known issue when estimating quantile processes; for example, see van der
Vaart (2000, Lemma 21.4(ii)). Assumption A5.2 requires the density of Y | X�W to be
bounded away from zero uniformly. This ensures that conditional quantiles of Y |X�W
are uniquely defined. It also implies that the limiting distribution of the estimated quan-
tile bounds are well behaved. Uniform continuity of the density implies that the deriva-
tives of the conditional quantile function with respect to τ are uniformly continuous.

For our main result in this section (Theorem 2) along with some of our preliminary
results (Lemmas 1, 3, and 4 in Appendix B.1), we establish convergence uniformly over
c ∈ C for some finite grid C = {c1� c2� � � � � cJ} ⊂ [0�C] where C ∈ (0�min{p1|w�p0|w}) for
all w ∈ supp(W ). We discuss the choice of these grid points in Appendix B.3. We con-
strain this grid to be below min{p1|w�p0|w} solely for simplicity, as all our results can be
extended to grids C ⊂ [0�1] by combining our present bound estimates with estimates
based on the c ≥ min{p1|w�p0|w} case given in Masten and Poirier (2018a). Weak con-
vergence of the breakdown frontier estimators does not hold uniformly over an interval
of c since the associated functional is not Hadamard directionally differentiable when
its codomain is a set of functions on that interval. To resolve this issue, we propose two
ways of conducting inference on the breakdown frontier uniformly over intervals of c.
The first is to use the fixed grid and monotonicity of the breakdown frontier to construct
a uniform band. The second is to smooth the population breakdown frontier such that
it is Hadamard differentiable when viewed as a function of c. We use the first approach
in this section and in the empirical illustration, and discuss the second approach in Ap-
pendix G in the Online Supplemental Material.

Next, we consider the conditional quantile bounds (6) and (7), which we estimate by

Q̂
c

Yx|W (τ)= Q̂Y |X�W
(
τ+ c

p̂x|w
min{τ�1 − τ}

∣∣∣ x�w)�
Q̂
c

Yx|W (τ)= Q̂Y |X�W
(
τ− c

p̂x|w
min{τ�1 − τ}

∣∣∣ x�w)� (15)

In Appendix B.1, Lemma 2, we establish their uniform convergence in distribution to a
Gaussian process.

By applying the functional delta method, we can show asymptotic normality of
smooth functionals of these conditional quantile bounds. A first set of functionals
are the CQTE bounds of equation (8), which are a linear combination of the quantile
bounds. Let

ĈQTE(τ� c |w)= Q̂c
Y1|W (τ |w)− Q̂cY0|W (τ |w) (16)

and

̂CQTE(τ� c |w)= Q̂cY1|W (τ |w)− Q̂c
Y0|W (τ |w)� (17)
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Both of these estimators converge in distribution to Gaussian processes.
A second set of functionals are the CATE bounds from equation (9). These bounds

are continuous linear functionals of the CQTE bounds. Therefore the joint asymptotic
distribution of these bounds can be established by the continuous mapping theorem.
Let

ĈATE(c |w)=
∫ 1

0
ĈQTE(u� c |w)du and ̂CATE(c |w)=

∫ 1

0

̂CQTE(u� c |w)du�

Then, by the linearity of the integral operator, these estimated CATE bounds converge
to their population counterpart at a

√
N-rate. We give their asymptotic distribution in

Appendix B.1.
We estimate the unconditional ATE bounds by integrating over the empirical distri-

bution of the covariatesW : Let

ÂTE(c)= 1
N

N∑
i=1

ĈATE(c |Wi) and ÂTE(c)= 1
N

N∑
i=1

̂CATE(c |Wi)� (18)

We show that these estimated ATE bounds converge weakly to a Gaussian element in
Appendix B.1.

Next consider estimation of the breakdown point for the claim that ATE ≥ μ where
μ ∈ R. To focus on the nondegenerate case, suppose the population value of ATE ob-
tained under full independence is greater than μ, ATE(0) > μ. This implies c∗ > 0. Let

ĉ∗ = inf
{
c ∈ [0�1] : ÂTE(c)≤ μ} (19)

be the estimated breakdown point. This is the estimated smallest relaxation of indepen-
dence such that we cannot conclude that the ATE is strictly greater than μ. By the prop-
erties of the quantile bounds as a function of c, the function ATE(c) is nonincreasing and
differentiable in c. We now formally present a result about the asymptotic distribution
of ĉ∗.

Proposition 1. Suppose Assumptions A1, A3, A4, and A5 hold. Assume c∗ ∈ (0�C]. Then√
N(̂c∗ − c∗)� Zbp, a Gaussian random variable.

The assumption that c∗ ∈ (0�C] can again be relaxed to the general case where
c∗ ∈ (0�1] but we maintain the stronger assumption for brevity. We characterize Zbp, the
asymptotic distribution of the estimated breakdown point, in the proof of Proposition 1.

Under conditional rank invariance, we can also establish asymptotic normality of
bounds for P(QY1|W (U |w)−QY0|W (U |w)≤ z) for a fixed z ∈R. These bounds are given
by (

P(c |w)�P(c |w))≡ (CDTE(z� c�0 |w)�CDTE(z� c�0 |w))�



58 Masten and Poirier Quantitative Economics 11 (2020)

We keep z implicit in the notation for these bounds. Estimates for these quantities are
provided by

P̂(c |w)=
∫ 1

0
1
(
Q̂
c

Y1|W (u |w)− Q̂c
Y0|W (u |w)≤ z)du�

P̂(c |w)=
∫ 1

0
1
(
Q̂
c

Y1|W (u |w)− Q̂cY0|W (u |w)≤ z)du� (20)

Their convergence to nonstandard distributions can be established using the Hadamard
directional differentiability of the mapping from the differences in quantile bounds to
the bounds (P(c |w)�P(c |w)). We do this in Appendix B.1, Lemma 3. There we also dis-
cuss an additional technical assumption on the smoothness of the conditional quantile
functions, Assumption A6.

If conditional random assignment holds (c = 0) in addition to conditional rank in-
variance (t = 0), then the CDTE is point identified and Lemma 3 in Appendix B.1 gives
the asymptotic distribution of the sample analog CDTE estimator (in this case the upper
and lower bound functions are equal). This can be considered an estimator of the CDTE
in one of the models of Matzkin (2003).

For c and t values greater than or equal to zero, we estimate the CDTE bounds by

ĈDTE(z� c� t |w)
= (1 − t)P̂(c |w)+ tmax

{
sup

y∈Yz(w)

(
F̂
c
Y1|W (y |w)− F̂cY0|W (y − z |w))�0

}
�

̂CDTE(z� c� t |w)
= (1 − t)P̂(c |w)+ t

(
1 + min

{
inf

y∈Yz(w)
(
F̂
c

Y1|W (y |w)− F̂cY0|W (y − z |w))�0
})
�

We estimate the unconditional DTE bounds by integrating the estimated CDTE bounds
over the empirical distribution of the covariates: Let

D̂TE(z� c� t)= 1
N

N∑
i=1

ĈDTE(z� c� t |Wi)�

̂DTE(z� c� t)= 1
N

N∑
i=1

̂CDTE(z� c� t |Wi)�

Lemma 3 in Appendix B.1 shows that the terms P(c | w) and P(c | w) are estimated at a√
N-rate by the Hadamard directional differentiability of the mapping linking empirical

cdfs and these terms. The second components of the CDTE bounds are a Hadamard
directionally differentiable functional as well, leading to the

√
N joint convergence of the

DTE bounds to a tight, random element uniformly in c and t. Lemma 4 in Appendix B.1
shows this formally.

Having established the convergence in distribution of the DTE, we can now show
that the breakdown frontier also converges in distribution uniformly over its arguments.



Quantitative Economics 11 (2020) Inference on breakdown frontiers 59

Denote the estimated breakdown frontier for the conclusion that P(Y1 >Y0)≥ p by

B̂F(c�p)= min
{
max
{
b̂f(c�p)�0

}
�1
}
� (21)

where

b̂f(c�p)= n̂um(c�p)

d̂enom(c)
(22)

with

n̂um(c�p)= 1 −p− 1
N

N∑
i=1

P̂(c |Wi)�

d̂enom(c)= 1 + 1
N

N∑
i=1

[
min
{

inf
y∈Y0(Wi)

(
F̂
c

Y1|W (y |Wi)− F̂cY0|W (y |Wi)
)
�0
}

− P̂(c |Wi)
]
�

We next show that the estimated breakdown frontier converges in distribution.

Theorem 2. Suppose Assumptions A1, A3, A4, A5, and A6 hold. Let P ⊂ [0�1] be a finite
grid of points. Then

√
N
(
B̂F(c�p)− BF(c�p)

)
� Zbf(c�p)�

a tight random element of �∞(C ×P).

This result essentially follows from the convergence of the preliminary estimators
established in Lemma C1 in Appendix C and by showing that the breakdown frontier is
a composition of a number of Hadamard differentiable and Hadamard directionally dif-
ferentiable mappings, implying convergence in distribution of the estimated breakdown
frontier.

Breakdown frontiers for more complex conclusions can typically be constructed
from breakdown frontiers for simpler conclusions. For example, consider the break-
down frontier for the joint conclusion that P(Y1 > Y0) ≥ p and ATE ≥ μ. Then the
breakdown frontier for this joint conclusion is the minimum of the two individual fron-
tier functions. Alternatively, consider the conclusion that P(Y1 > Y0) ≥ p or ATE ≥ μ,
or both, hold. Then the breakdown frontier for this joint conclusion is the maximum
of the two individual frontier functions. Since the minimum and maximum operators
are Hadamard directionally differentiable, the samaple analog estimators of these joint
breakdown frontiers will also converge in distribution.

Since the limiting process is non-Gaussian, inference on the breakdown frontier is
not based on standard errors as with Gaussian limiting theory. Our processes’ distribu-
tion is characterized fully by the expressions in Appendices B.1 and C, but obtaining
analytical estimates of quantiles of functionals of these processes would be challenging.
In the next subsection we give details on the bootstrap procedure we use to construct
confidence bands for the breakdown frontier.
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Bootstrap inference

As mentioned earlier, we use a bootstrap procedure to do inference on the breakdown
frontier rather than directly using its limiting process. In this subsection we discuss how
to use the bootstrap to approximate this limiting process. In the next subsection we dis-
cuss its application to constructing uniform confidence bands.

First we define some general notation. Let Zi = (Yi�Xi�Wi) and ZN = {Z1� � � � �ZN}.
Let θ0 denote some parameter of interest and let θ̂ be an estimator of θ0 based on the
data ZN . Let A∗

N denote
√
N(θ̂∗ − θ̂) where θ̂∗ is a draw from the nonparametric boot-

strap distribution of θ̂. Suppose A is the tight limiting process of
√
N(θ̂ − θ0). Denote

bootstrap consistency by A∗
N

P� A where
P� denotes weak convergence in probability,

conditional on the data ZN . Weak convergence in probability conditional on ZN is de-
fined as

sup
h∈BL1

∣∣E[h(A∗
N

) |ZN]−E
[
h(A)
]∣∣= op(1)�

where BL1 denotes the set of Lipschitz functions into R with Lipschitz constant no
greater than 1.

We focus on the following specific choices of θ0 and θ̂:

θ0 =
⎛⎜⎝FY |X�W (· | ·� ·)

p(·|·)
q(·)

⎞⎟⎠ and θ̂=
⎛⎜⎝F̂Y |X�W (· | ·� ·)

p̂(·|·)
q̂(·)

⎞⎟⎠ �
For these choices, let Z∗

N = √
N(θ̂∗ − θ̂). Let Z1 denote the limiting distribution of√

N(θ̂ − θ0); see Lemma C1 in Appendix C. Theorem 3.6.1 of van der Vaart and Well-

ner (1996) implies that Z∗
N

P� Z1. Our parameters of interest are all functionals φ of θ0.
For Hadamard differentiable functionals φ, the nonparametric bootstrap is consistent.
For example, see Theorem 3.1 of Fang and Santos (2019). They further show that φ is
Hadamard differentiable if and only if

√
N
(
φ(θ̂∗)−φ(θ̂)) P�φ′

θ0
(Z1)�

where φ′
θ0

denotes the Hadamard derivative at θ0. This implies that the nonparamet-
ric bootstrap can be used to do inference on the QTE and ATE bounds since they are
Hadamard differentiable functionals of θ0. A second implication is that the nonpara-
metric bootstrap is not consistent for the DTE or for the breakdown frontier for claims
about the DTE since they are Hadamard directionally differentiable mappings of θ0, but
they are not ordinary Hadamard differentiable.

In such cases, Fang and Santos (2019) showed that a different bootstrap procedure is
consistent. Specifically, let φ̂′

θ0
be a consistent estimator of φ′

θ0
. Under some regularity

conditions, their results imply that

φ̂′
θ0

(
Z∗
N

) P�φ′
θ0
(Z1)�
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Analytical consistent estimates of φ′
θ0

are often difficult to obtain, so Dümbgen (1993)
and Hong and Li (2018) proposed using a numerical derivative estimate of φ′

θ0
. Their

estimate of the limiting distribution of
√
N(φ(θ̂)−φ(θ0)) is given by the distribution of

φ̂′
θ0

(√
N(θ̂∗ − θ̂))= φ

(
θ̂+ εN

√
N(θ̂∗ − θ̂))−φ(θ̂)
εN

(23)

across the bootstrap estimates θ̂∗. Under the rate constraints εN → 0 and
√
NεN → ∞,

and some measurability conditions stated in their Appendix, Hong and Li (2018) showed

φ̂′
θ0

(√
N(θ̂∗ − θ̂)) P�φ′

θ0
(Z1)�

where the left-hand side is defined in equation (23).
This bootstrap procedure requires evaluating φ at two values, which is computa-

tionally simple. It also requires selecting the tuning parameter εN , which we discuss in
Appendix B.4. Note that the standard, or naive, bootstrap is a special case of this numer-
ical delta method bootstrap where εN =N−1/2.

Uniform confidence bands for the breakdown frontier

In this subsection, we combine all of our asymptotic results thus far to construct uni-
form confidence bands for the breakdown frontier. As in Section 2, we use the function
BF(·�p) to characterize this frontier. We specifically construct one-sided lower uniform
confidence bands. That is, we will construct a lower band function L̂B(c) such that

lim
N→∞

P
(
L̂B(c)≤ BF(c�p) for all c ∈ [0�1])= 1 − α�

We use a one-sided lower uniform confidence band because this gives us an inner con-
fidence set for the robust region. Specifically, define the set

RRL = {(c� t) ∈ [0�1]2 : t ≤ L̂B(c)
}
�

Then validity of the confidence band L̂B implies

lim
N→∞

P
(
RRL ⊆ RR(0�p)

)= 1 − α�

Thus the area underneath our confidence band, RRL, is interpreted as follows: Across
repeated samples, approximately 100(1 − α)% of the time, every pair (c� t) ∈ RRL leads
to a population level identified set for the parameter P(Y1 >Y0)which lies weakly above
p. Put differently, approximately 100(1 − α)% of the time, every pair (c� t) ∈ RRL still lets
us draw the conclusion we want at the population level. Hence the size of this set RRL is a
finite sample measure of robustness of our conclusion to failure of the point identifying
assumptions. We discuss an alternative testing-based interpretation in Appendix D in
the Online Supplemental Material.

One might be interested in constructing one-sided upper confidence bands if the
goal was to do inference on the set of assumptions for which we cannot come to the
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conclusion of interest. This might be useful in situations where two opposing sides are
debating a conclusion. But since our focus is on trying to determine when we can come
to the desired conclusion, rather than looking for when we cannot, we only describe the
one-sided lower confidence band case.

When studying inference on scalar breakdown points, Kline and Santos (2013) con-
structed one-sided lower confidence intervals. Unlike for breakdown frontiers, unifor-
mity over different points in the assumption space is not a concern for inference on
breakdown points. See Appendix D in the Online Supplemental Material for more dis-
cussion.

We consider bands of the form

L̂B(c)= B̂F(c�p)− k̂(c) (24)

for some function k̂(·) ≥ 0. This band is an asymptotically valid lower uniform confi-
dence band of level 1 − α if

lim
N→∞

P
(
B̂F(c�p)− k̂(c)≤ BF(c�p) for all c ∈ [0�1])= 1 − α�

or, equivalently, if

lim
N→∞

P

(
sup
c∈[0�1]

√
N
(
B̂F(c�p)− BF(c�p)− k̂(c))≤ 0

)
= 1 − α�

In our theoretical analysis, we consider k̂(c)= ẑ1−ασ(c) for a scalar ẑ1−α and a func-
tion σ . We focus on known σ for simplicity. We start by deriving a uniform band over a
grid C, then extend it over an interval using monotonicity of the breakdown frontier. As
discussed earlier, we only derive uniformity of the band over c ∈ [0�C] rather than over
c ∈ [0�1], but this is also for brevity and can be relaxed. The choice of σ affects the shape
of the confidence band, and there are many possible choices of the function σ which
yield valid level 1 −α uniform confidence bands. See Freyberger and Rai (2018) for a de-
tailed analysis. A simple choice of σ is the constant function: σ(c) = 1, which delivers
an equal width uniform band. Alternatively, as we do below, one could choose σ(c) to
construct a minimum width confidence band (equivalently, maximum area of RRL).

Proposition 2. Suppose Assumptions A1, A3, A4, A5, and A6 hold. Define φ : �∞(R ×
{0�1} × supp(W ))× �∞({0�1} × supp(W ))× �∞(supp(W ))→ �∞(C) such that

B̂F(c�p)= [φ(θ̂)](c)�
Then φ is Hadamard directionally differentiable. Suppose that εN → 0 and

√
NεN → ∞.

Let θ̂∗ denote a draw from the nonparametric bootstrap distribution of θ̂. Then[
φ̂′
θ0

(√
N(θ̂∗ − θ̂))] P� [φ′

θ0
(Z1)
]≡ Zbf� (25)

For a given function σ(·) such that infc∈C σ(c) > 0, define

ẑ1−α = inf
{
z ∈R : P

(
sup
c∈C

[
φ̂′
θ0

(√
N(θ̂∗ − θ̂))](c�p)
σ(c)

≤ z
∣∣∣ZN)≥ 1 − α

}
� (26)
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Finally, suppose also that the cdf of

sup
c∈C

[
φ′
θ0
(Z1)
]
(c�p)

σ(c)
= sup
c∈C

Zbf(c�p)

σ(c)

is continuous and strictly increasing at its 1 − α quantile, denoted z1−α. Then ẑ1−α =
z1−α + op(1).

This proposition is a variation of Corollary 3.2 in Fang and Santos (2015). Note that
this result is pointwise in the underlying dgp; we are unsure if it can be extended to hold
uniformly over the dgp and leave this question to future work. Proposition 2 implies
that the lower 1−α band L̂B(c)= B̂F(c�p)− ẑ1−ασ(c) is valid uniformly on the grid C. To

extend the uniformity to all of [0�C], we propose the following lower confidence band:

L̃B(c)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂B(c1) if c ∈ [0� c1]�
���

L̂B(cj) if c ∈ (cj−1� cj], for j = 2� � � � � J�
���

0 if c ∈ (cJ�C]�
This band is a step function which interpolates between grid points using the least
monotone interpolation. The following result shows its validity.

Corollary 1. Let the assumptions of Proposition 2 hold. Then L̃B(c) is a uniform lower
1 − α band for BF(c�p) over c ∈ [0�C].

Corollary 1 shows that, for any fixed J ≥ 1, the interpolated lower confidence band
preserves the exact 1 − α coverage on the grid points. This follows by monotonicity of
the breakdown frontier; see Lemma C6 in Appendix C. That said, this interpolated band
might not be taut, in the sense that there may exist other lower bands with 1−α coverage
that are weakly larger than L̃B(c) for all c and strictly larger at some values of c. See
Freyberger and Rai (2018) for further discussion of taut confidence bands.

Proposition 2 can be extended to estimated functions σ , although we leave the de-
tails for future work. We use an estimated σ in our application, as described next. When
both z1−α and σ are estimated, we work directly with k̂(c)= ẑ1−ασ̂(c). We choose k̂(c) to
minimize an approximation to the area between the confidence band and the estimated
function; equivalently, to maximize the area of RRL. Specifically, we let k̂(c1)� � � � � k̂(cJ)

solve

min
k(c1)�����k(cJ)≥0

J∑
j=2

k(cj)(cj − cj−1) (27)

subject to

P

(
sup

c∈{c1�����cJ}

√
N
(
B̂F(c�p)− BF(c�p)− k(c))≤ 0

)
= 1 − α� (28)
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where we approximate the left-hand side probability via the numerical delta method
bootstrap. The criterion function here is just a right Riemann sum over the grid points.
This optimization is not computationally costly: It is only performed once per value of p
and εN . Moreover, in our empirical illustration it takes an average of 15 seconds per run
on a mid-2013 MacBook Air.

4. Empirical illustration: The effects of child soldiering

In this section we use our results to examine the impact of assumptions in determin-
ing the effects of child soldiering on wages. We first briefly discuss the background and
motivation and then we present our analysis.

Background

We use data from phase 1 of SWAY, the Survey of War Affected Youth in northern Uganda,
conducted by principal researchers Jeannie Annan and Chris Blattman (see Annan,
Blattman, and Horton (2006)). As Blattman and Annan (2010) discuss on page 882, a pri-
mary goal of this survey was to understand the effects of a twenty year war in Uganda,
where “an unpopular rebel group has forcibly recruited tens of thousands of youth.” In
their paper, they use this data to examine the impacts of abduction on educational, la-
bor market, psychosocial, and health outcomes. In our illustration, we focus solely on
the impact of abduction on wages.

Blattman and Annan noted that self-selection into the military is a common prob-
lem in the literature studying the effects of military service on outcomes. They argue
that forced recruitment in Uganda led to random assignment of military service in their
data. They first provide qualitative evidence for this, based on interviews with former
rebels who led raiding parties. After murdering and mutilating civilians, the rebels had
no public support, making abduction the only means of recruitment. Youths were gen-
erally taken during nighttime raids on rural households. According to the former rebel
leaders, “targets were generally unplanned and arbitrary; they raided whatever home-
steads they encountered, regardless of wealth or other traits.”

This qualitative evidence is supported by their survey data, where Blattman and An-
nan show that most pretreatment covariates are balanced across the abducted and non-
abducted groups (see their Table 2). Only two covariates are not balanced: year of birth
and prewar household size. They say this is unsurprising because

“a youth’s probability of ever being abducted depended on how many years of the conflict
he fell within the [rebel group’s] target age range. Moreover, abduction levels varied over the
course of the war, so youth of some ages were more vulnerable to abduction than others.
The significance of household size, meanwhile, is driven by households greater than 25 in
number. We believe that rebel raiders, who traveled in small bands, were less likely to raid
large, difficult-to-control households.” (page 887)

Hence they use a selection-on-observables identification strategy, conditioning on these
two variables.
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While their evidence supporting the full conditional independence assumption is
compelling, this assumption is still nonrefutable. Hence they apply the methods of Im-
bens (2003) to analyze the sensitivity to this assumption. In this analysis, they only con-
sider one outcome variable, years of education. Likewise, as in Imbens (2003), they only
look at one parameter, the constant treatment effect in a fully parametric model.

We complement their results by applying the breakdown frontier methods we de-
velop in this paper. We focus on the log-wage outcome variable. We look at both the
average treatment effect and P(Y1 >Y0), which was not studied in Blattman and Annan
(2010).

Motivation for the parameter P(Y1 >Y0)

Blattman and Annan (2010) is part of a large literature on the impact of compulsory
military service on wages. As Card and Cardoso (2012, pages 57–58) note,

“Angrist (1990) showed that Vietnam-era draftees had lower earnings than non-draftees, a
finding he attributed to the low value of military experience in the civilian labor market.
Subsequent research in the United States and other countries, however, has uncovered a
surprisingly mixed pattern of impacts.”

On one hand, enlistees learn basic skills and receive occupational training in the mil-
itary. On the other hand, they forgo civilian schooling and work experience, and may
experience debilitating psychological trauma. Which of these two explanations is cor-
rect? Most likely, both. By using models where the treatment effects Y1 − Y0 are het-
erogeneous, we allow some people to have overall positive effects, and thus satisfy the
first explanation, and some people to have overall negative effects, and thus satisfy the
second explanation. The parameter P(Y1 > Y0) tells us precisely which proportion of
the population primarily satisfies the first versus the second explanation. Thus it gives
researchers a more nuanced understanding of treatment effects, by quantitatively mea-
suring the prevalence of two opposing explanations of the impact of treatment on out-
comes. We suspect this parameter can be particularly helpful in literatures which find
a “mixed pattern of impacts,” like the work on compulsory military service and wages
discussed here.

That said, one may be concerned that the rank invariance assumption used to point
identify this parameter is too strong. As in Heckman, Smith, and Clements (1997), this
concern motivates our sensitivity analysis. For further motivation of this parameter in
various settings, see Bedoya, Bittarello, Davis, and Mittag (2017) and Mullahy (2018).

Sample and summary statistics

The original phase 1 SWAY data has 1216 males born between 1975 and 1991. Of these,
wage data is available for 504 observations. 56 of these earned zero wages; we drop these
and only look at people who earned positive wages. This leaves us with our main sample
of 448 observations. In addition to this outcome variable, we let our treatment variable
be an indicator that the person was not abducted. We include the two covariates dis-
cussed above, age when surveyed and household size in 1996. Additional covariates can
be included, but we focus on just these two for simplicity.
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Table 1. Summary statistics.

Variable Name Mean Median Stddev Min Max

Daily wage in Uganda shillings 2957�60 1400�00 6659�76 35�71 83,333�34
Log wage 7�23 7�24 1�18 3�58 11�33
Not abducted? 0�36 0�00 0�48 0�00 1�00
Age when surveyed 22�11 22�00 4�88 14�00 30�00
Household size in 1996 8�31 8�00 4�19 2�00 28�00

Note: Sample size is 448. 1 USD is approximately 1800 Uganda shillings (Exchange rate at time of survey, 2005–2006; source:
World Bank).

Table 1 shows summary statistics for these four variables. 36% of our sample were
not abducted. Age ranges from 14 years old to 30 years old, with a median of 22 years
old. Household size ranges from 2 people to 28, with a median of 8 people. Wages range
from as low as 36 shillings to as high as about 83,300 shillings, with a median of 1400
shillings.

Age has 17 support points and household size has 21 support points. Hence there are
357 total covariate cells. Including the treatment variable, this yields 714 total cells, com-
pared to our sample size of 448 observations. Since we focus on unconditional param-
eters, having small or zero observations per cell is not a problem in principle. However,
in the finite sample we have, to ensure that our estimates of the cdf bounds F

c
Yx|W (y |w)

and FcYx|W (y | w) are reasonably smooth in y, we collapse our covariates as follows. We
replace age with a binary indicator of whether one is above or below the median age.
Likewise, we replace household size with a binary indicator of whether one lived in a
household with above or below median household size. This reduces the number of co-
variate cells to 4, giving 8 total cells including the treatment variable. This yields approx-
imately 55 observations per cell. While this crude approach suffices for our illustration,
in more extensive empirical analyses one may want to use more sophisticated meth-
ods. For example, we could use discrete kernel smoothing, as discussed in Li and Racine
(2008), who also provide additional references. We also consider alternative coarsenings
in Appendix H in the Online Supplemental Material.

Baseline analysis for ATE

Table 2 shows unconditional comparisons of means of the outcome and the original
covariates across the treatment and control groups. Wages for people who were not ab-
ducted are 702 shillings larger on average. People who were not abducted are also about
1�4 years younger than those who were abducted. People who were not abducted also
had a slightly larger household size than those who were abducted. Only the difference
in ages is statistically significant at the usual levels, but as in Tables 2 and 3 of Blattman
and Annan (2010) the standard errors can be decreased by including additional controls.
These extra covariates are not essential for illustrating our breakdown frontier methods,
however.

The point estimates in Table 2 do not condition on the two covariates. Next we con-
sider the conditional independence assumption, with age and household size in 1996 as
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Table 2. Comparison of means.

Variable Name Not Abducted Abducted Difference

Daily wage in Uganda shillings 3409�12 2706�75 702�36 [725�49]
Log wage 7�33 7�18 0�15 [0�12]
Age when surveyed 21�23 22�60 −1�37 [0�48]
Household size in 1996 8�53 8�19 0�34 [0�42]
Observations 160 288

Note: Sample size is 448. 1 USD is approximately 1800 Uganda shillings (Exchange rate at time of survey, 2005–2006; source:
World Bank). Standard errors in brackets.

our covariates. Under this assumption, our estimate of ATE is 890 [726�13] shillings when
the outcome variable is level of wages, and is 0�21 [0�11] when the outcome variable is
log wage. Using their full set of control variables, Blattman and Annan (2010) estimated
ATE to be 0�33 [0�15] when the outcome is log wage. See column 1 of their Table 3.

Breakdown point for ATE: Implementation

To check the robustness of these baseline point estimates to failure of conditional inde-
pendence, we estimate the breakdown point c∗ for the conclusion ATE ≥ 0, where we use
log wage as our outcome variable. We measure relaxations of conditional independence
by our conditional c-dependence distance. Here, we describe the mechanics of estimat-
ing the breakdown point. In the next subsection, we describe the empirical results.

Since our estimated ATE is positive, the estimated breakdown point depends only
on the estimated ATE lower bound function, as defined by equation (19). Computing ĉ∗
using this equation requires two steps:

1. Define a function to compute ÂTE(c) for any c ∈ [0�1]. This can be done in several
ways. One is to directly compute the estimators in equation (18). That approach averages
over the covariate cells in the final step. Here we average over them in the first step. Either
approach works for the ATE, but averaging over the covariates early leads to simpler
code.

(a) Define two functions to compute the conditional cdf bounds estimators in equa-
tion (14). At this step we use two preliminary estimators:

i. Cell means to compute the propensity scores p̂x|w, as defined in equation (12).

ii. A smoothed empirical cdf F̂Y |X�W (· | x�w). For example, see Hansen (2004). We use
the standard logistic kernel. We use Hansen’s method for selecting the bandwidth and
then divide by two, as manual undersmoothing.

Average this function over the covariate cells (using q̂w from equation (13) as weights)

to get estimates of the unconditional cdf bounds F̂
c

Yx
(y) and F̂

c
Yx
(y). Note that equation

(14) requires c <minx�w px|w. For larger c values we use the sample analogs of equations
(6) and (7) in Masten and Poirier (2018a), which hold for all values of c ∈ [0�1].
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(b) Given these functions, define a function to compute the unconditional QTE
bound

Q̂TE(τ� c)= (F̂cY1

)−1
(τ)− (F̂cY0

)−1
(τ)�

This is the unconditional version of equation (16). To compute the inverse cdfs, we do
the following: Define a uniform grid from the smallest to largest observed outcome
value, with 500 grid points. Evaluate the cdf at each point. This gives 500 pairs of the
form (y�F(y)). Flip them around to get (F(y)� y) and we have the quantile function eval-
uated at 500 points. Then use linear interpolation to compute the quantile function at
any value τ.

(c) The last step is to numerically integrate these QTE bounds to get

ÂTE(c)=
∫ 1

0
Q̂TE(u� c)du�

Any numerical integration method can be used here. We use a simple approach: Ap-
proximate the intergral by an average over 1000 uniformly spaced grid points between
0 and 1. That is, we evaluate the integrand at each of the grid points and then take the
mean.

2. The function from step 1 is weakly decreasing in c. Given this function, we just
need to solve for roots of the equation ÂTE(c)= 0. This can be done using standard root
finding algorithms, like bisection. We use Matlab’s fzero function, which uses a more
sophisticated algorithm than simple bisection, but is still guaranteed to converge. See
Chapter 4 of Brent (1973). The solution is our estimate ĉ∗.

Breakdown point for ATE: Results

The estimated breakdown point is ĉ∗ = 0�041. Based on this point estimate, for all x ∈
{0�1} and w ∈ supp(W ) we can allow the conditional propensity scores P(X = x | Yx = y�
W = w) to vary ±4 percentage points around the observed propensity scores P(X = x |
W =w) without changing our conclusion that ATE ≥ 0.

Is this a big or small amount of variation? Well, as a baseline, the upper bound on c
is about 0�73. This is an estimate of

max
w∈supp(W )

max
{
P(X = 1 |W =w)�P(X = 0 |W =w)}�

Any c ≥ 0�73 would lead to the no assumptions identified set for ATE. In this sense, 0�041
is quite small, which would suggest that our results are quite fragile. Next we exam-
ine variation in the observed propensity scores as we suggested in Masten and Poirier
(2018a). Specifically, we consider the difference between the “full” propensity score and
the “leave out variable k” propensity score which omits variable k: Define

cage = sup
s=0�1

sup
a=0�1

∣∣̂P(X = 1 | age= a�hhSize= s)− P̂(X = 1 | hhSize= s)∣∣
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and

chhSize = sup
a=0�1

sup
s=0�1

∣∣̂P(X = 1 | age= a�hhSize= s)− P̂(X = 1 | age= a)∣∣�
Using these numbers as a reference, a robust result would have a breakdown point above
one or both of the c’s. In the data, we obtain cage = 0�0625 and chhSize = 0�0403. The es-
timated breakdown point ĉ∗ = 0�041 is below cage and approximately equal to chhSize.
This suggests that perhaps our conclusion could be considered somewhat robust. Ac-
counting for sampling uncertainty in the breakdown point, however, shows that the true
breakdown point may be less than chhSize. Overall, this suggests that our conclusion that
ATE ≥ 0 is not robust to relaxations of full conditional independence.

This argument for judging the plausibility of specific values of c relies on using varia-
tion in the observed propensity score to ground our beliefs about reasonable variation in
the unobserved propensity scores. The general question here is how one should quanti-
tatively distinguish “large” and “small” relaxations of an assumption. This is an old and
ongoing question in the sensitivity analysis literature, and much work remains to be
done. For discussions on this point for different measures of deviations or relaxations
from independence in various settings, see Rotnitzky, Robins, and Scharfstein (1998),
Robins (1999), Imbens (2003), Altonji, Elder, and Taber (2005, 2008), and Oster (2019).

Baseline analysis for P(Y1 >Y0)

Next consider the parameter P(Y1 > Y0). Since we define treatment as not being ab-
ducted, this parameter measures the proportion of people who earn higher wages when
they are not abducted, compared to when they are abducted. For this parameter, we
must make both the full conditional independence assumption and the conditional
rank invariance assumption to obtain point identification. Under these assumptions,
our point estimate is 0�67 with a one-sided lower 95% CI of [0�48�1]. Is this point estimate
robust to failures of full conditional independence and conditional rank invariance? We
address this in the next two subsections.

Breakdown frontier for P(Y1 >Y0): Implementation

To check the robustness of our baseline point estimate, we estimate breakdown fron-
tiers and corresponding confidence bands for the conclusion that P(Y1 > Y0) ≥ p. We
do this for p= 0�1, 0�25, 0�5 as in our Monte Carlo simulations in Appendix F. We do not
consider p= 0�75 or 0�9 since these values are larger than our point estimate under the
baseline assumptions; they yield empty estimated robust regions. Besides picking a grid
of p’s a priori, one could let p= p̂0�0/2, half the value of the parameter estimated under
the baseline point identifying assumptions. In our application this is 0�34; we omit this
choice for brevity. Imbens (2003) suggested a similar choice of cutoff in his approach.

We next explain the mechanics of how to compute the breakdown frontier estimate
and its confidence bands. In the following subsection, we describe the empirical results.
We start with the breakdown frontier point estimate, as defined by equation (21). There
are two components to computing this equation:
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1. The term P̂(c |w). This estimate is defined as an integral in equation (20).

(a) To compute the integrand, we use equation (15). We compute the conditional
quantile functions by inverting the conditional cdfs, as described in the ATE analysis
above.

(b) To compute the integral we use proposition 1(ii) of Chernozhukov, Fernández-Val,
and Galichon (2010). This proposition uses the special structure of this integral—which
is called the pre-rearrangement operator—to write the integral in terms of the roots of
the function inside the indicator function. This allows us to quickly and accurately com-
pute this integral. It converts the problem of numerical integration into a problem of
root finding. To compute these roots, we again use Matlab’s fzero.

2. The infimum term in d̂enom(c).

(a) We compute the objective function as described in our ATE breakdown analysis
above, using smoothed empirical cdfs.

(b) We then use a combination of grid search and Newton’s method to minimize this
objective function. Here we search over y values between the smallest and largest ob-
served outcome variable.

This shows how to estimate the breakdown frontier for any c and p. Later when we plot
our estimate we use a finite grid of points c. Specifically, we use 25 values of c, equally
spaced between 0 and 0�73 = maxx�w p̂x|w. We use the same grid for our bootstrap pro-
cedure. The rule of thumb suggested in Appendix B.3 suggests using 22 grid points. We
use a few more since the estimated breakdown frontier is zero for most of these values
anyway, even for the smallest p value. So the number of relevant grid points is fairly
small.

Next we describe how we implement the bootstrap confidence bands developed in
Section 3. This bootstrap requires that we choose a tuning parameter, εN . To choose this
parameter, we first restrict attention to a grid of seven possible values: For � = 1� � � � �7
we let ε� = r · εnaive

N where r ∈ {1�1�5�2�4�6�8�10} and εnaive
N = 1/

√
N . We use the same

grid in our Monte Carlo simulations in Appendix F (in the simulations we also use the
value r = 0�5). Given this grid, we do the following:

1. Draw and store 1000 bootstrap samples of the data. Here we use the standard non-
parametric bootstrap.

2. For each ε� and each bootstrap sample:

(a) Compute the perturbed parameter θ̂+ε�
√
N(θ̂∗ − θ̂) in equation (23). For the per-

turbed cdf, we form an equally spaced grid of 10,000 values of y between the smallest
and largest observed outcome variables. We then compute and store

F̂Y |X�W (y | x�w)+ ε�
√
N
(
F̂∗
Y |X�W (y | x�w)− F̂Y |X�W (y | x�w))

for all y values on the grid, all x ∈ {0�1}, and all w in the support of the covariates. Here
F̂Y |X�W is the empirical cdf from the original data (equation (11)) and F̂∗

Y |X�W denotes
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the empirical cdf using the bootstrap data. We use empirical cdfs here since they are
substantially faster to compute than smoothed cdfs. For each x and w value, we then
monotonize this perturbed cdf and truncate it to lie between 0 and 1, to ensure that
it is a valid cdf. This is not necessary asymptotically, but it is helpful in finite samples.
Moreover, this operation is Hadamard directionally differentiable and hence does not
affect the asymptotic theory.

(b) Next we compute the breakdown frontier at all grid points c and all p using these

perturbed values as the first step plug-in estimators. This gives us φ(θ̂+ ε�
√
N(θ̂∗ − θ̂))

from equation (23). At this step we compute the integral defining the term P̂(c | w) dif-
ferently than above. The root-based approach is not always reliable in these bootstrap
perturbed samples since the term inside the indicator function can oscillate dramati-
cally. So here we instead take a grid of 500 equally spaced values between 0 and 1, eval-
uate the integrand at all values and take the average. We also use a slightly smoothed
indicator function for the integrand.

(c) Continuing from the previous step, subtract the estimated breakdown frontier us-
ing the original data and divide by ε� to finish computing equation (23).

3. Fixing an ε� and a c, the distribution of the term from the previous step across the
bootstrap samples approximates the sampling distribution of

√
N
(
B̂F(c�p)− BF(c�p)

)
�

This continues to hold if we look at the vector of these terms for all c in the grid. Thus,
for any given vector of constants k(c), we can approximate the left-hand side of equa-
tion (28) by looking at the distribution of the supremum over c of equation (23) from the
previous step minus

√
Nk(c). Specifically, note that the inequality inside the probability

in equation (28) can be written as a product of indicator functions for each grid point.
Since we will optimize subject to this constraint, it is helpful to smooth it. So we approx-
imate each indicator function by a smoothed indicator. We use the logitstic kernel and
for each c we pick the bandwidth by Hansen’s (2004) method, using the distribution of
the term from equation (23) across the bootstrap samples as data. For a given bootstrap
dataset, we compute the product of these indicators. We then average that product over
all bootstrap datasets to get an estimate of the probability on the left-hand side of equa-
tion (28).

4. Solve equation (27) subject to equation (28). Since we smoothed the constraint
function this can be done using any nonlinear optimizer. At this step we must pick our
desired coverage probability. We compute 95% confidence bands. Denote the solution
vector by k̂(c).

5. Finally, we compute the lower confidence band using equation (24). For certain
values of ε�, this band can be nonmonotonic; in these cases we monotonize the band.

This procedure produces seven different confidence bands—one for each ε�. To pick our
preferred band, we use the double bootstrap procedure described in Appendix B.4. We
implement this as follows:
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1. Draw and store 500 bootstrap samples of the data. For this we use the smoothed
bootstrap. Specifically, for each draw i= 1� � � � �N ,

(a) Draw a value of the covariate vector from its empirical distribution.

(b) Draw a treatment value from the Bernoulli distribution with success parameter
equal to the estimated propensity score evaluated at the covariate draw from the previ-
ous step.

(c) Draw from the Unif[0�1] distribution. Evaluate the smoothed quantile function
F̂−1
Y |X�W (· | x�w) at this draw, where w is from the first step and x is from the second

step. This defines the outcome variable value for this draw. We compute the smoothed
quantile by linear interpolation of the smoothed cdf, as described earlier.

2. For each ε�,

(a) For each of the 500 bootstrap samples, treat it as if it was the true data and com-
pute a confidence band as we described above using this choice of ε�. Check whether
this confidence band lies under the breakdown frontier estimated from the original data.
Note that this estimate corresponds to the true breakdown frontier in the “bootstrap
world” where we treat the smoothed empirical cdf F̂Y |X�W as the true distribution of
outcomes given treatment and covariates.

(b) Compute the estimated coverage probability for this choice of ε� by averaging the
indicators of coverage for each of the 500 samples.

3. Pick the ε� with estimated coverage probability closest to 95%.

Part 2(a) can be done in parallel on a computing cluster.

Breakdown frontier for P(Y1 >Y0): Results

Figure 3 shows the results of the procedure we just described. As in our earlier plots, the
horizontal axis plots c, relaxations of full conditional independence, while the vertical

Figure 3. Estimated breakdown frontiers (solid lines) and confidence bands (dotted/dashed
lines) for the claim P(Y1 >Y0)≥ p. Left to right: p= 0�1, 0�25, 0�5. The light dotted lines are con-
fidence bands for all seven values of εN considered. The darker dashed line is the band selected
by the double bootstrap procedure described in Appendix B.4. See text for additional implemen-
tation details.
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axis plots t, relaxations of conditional rank invariance. As mentioned earlier, the natu-
ral upper bound for c is about 0�73. Since all of the breakdown frontiers intersect the
horizontal axis at much smaller values, we have cut off the part of the overall assump-
tion space with c ≥ 0�2. Remember that, for the following analysis, it is valid to examine
various (c� t) combinations since we use uniform confidence bands.

First consider the left plot, p = 0�1. Since this is the weakest conclusion of the five
we consider, the estimated breakdown frontier and the corresponding robust region are
the largest among the three plots. If we impose full conditional independence, then our
estimated frontier suggests that we can completely relax conditional rank invariance
and still conclude that at least 10% of people benefit from not being forced into military
service. Even accounting for sampling uncertainty, we can still draw this conclusion.
Moreover, looking at all choices of εN—not just our selected one—the lowest the vertical
intercept ever gets is about 61%. Next, suppose we relax full conditional independence.
Recall that the maximal relaxation between the observed propensity score and the “leave
out variable k” propensity scores gave cage = 0�0625 and chhSize = 0�0403. Both of these
numbers are substantially smaller than the horizontal intercept of our selected confi-
dence band. Hence, if we impose full conditional rank invariance, our conclusion that
P(Y1 > Y0) ≥ 0�1 is robust to relaxations of full conditional independence. Suppose in-
stead that we think selection on unobservables is at most the largest c value, about 0�06.
Then for c’s in the range [0�0�06], and accounting for sampling uncertainty, we can still
conclude P(Y1 >Y0)≥ 0�1 so long as at least 30% of the population satisfies rank invari-
ance. Thus we can relax full independence within this range without paying too high a
cost in terms of requiring stronger rank invariance assumptions.

If we are willing to restrict selection on unobservables to be smaller than the largest
c value, then we can allow for larger relaxations of conditional rank invariance. To quan-
tify this trade-off, we can compute the difference between the values of the estimated
breakdown frontier at two different points. As a starting point we recommend comput-
ing

B̂F(c(K)�p)− B̂F(c(K−1)�p)�

where K denotes the number of observed regressors, c(K) denotes the largest value of
c, and c(K−1) denotes the second largest value. One could also divide this difference by
c(K) − c(K−1) to get a secant line. In our empirical application, c(K) = cage and c(K−1) =
chhSize. Thus

B̂F(cage�0�1)− B̂F(chhSize�0�1)= −6%�

The corresponding secant line has slope about −3. Thus if we assume selection on un-
observables is at most as large as the second largest amount of variation in “leave out
variable k” propensity scores, we can allow for an additional 6% of the population to
violate conditional rank invariance. Put differently, around these values of c, allowing
latent conditional propensity scores to vary an extra 1 percentage point requires us to
impose that an additional 3% of the population must satisfy conditional rank invari-
ance. This rate of substitution generally increases as c gets larger. Our ability to quantify
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this kind of trade-off between assumptions is a primary goal of our breakdown frontier
analysis.

Overall, our results from this top left plot suggest that the conclusion that at least
10% of people benefit from not being forced into military service is robust to relaxations
of full conditional independence up to twice the size we see between the observed and
leave out variable k propensity scores, depending on how much conditional rank invari-
ance failure we allow. For relaxations of full conditional independence up to the largest
value of c, we can allow up to 70% of the population to deviate from conditional rank
invariance, accounting for sampling uncertainty.

Next consider the middle plot, p= 0�25. Since this is a stronger conclusion than the
previous one, all the frontiers are shifted toward the origin. Consequently, by construc-
tion, this conclusion is not as robust as the previous one. Our qualitative conclusions,
however, are similar to those obtained for p = 0�1. If we impose full conditional inde-
pendence, we can allow conditional rank invariance to fail for about 70% of the popu-
lation. Conversely, if we impose full conditional rank invariance, we can allow the latent
conditional propensity scores to vary by about 10 percentage points—well beyond the
largest observed variation c. For p= 0�25, we have

B̂F(cage�0�25)− B̂F(chhSize�0�25)= −17%�

Hence the slope around our observed maximal c’s is much larger for p = 0�25 as com-
pared to p= 0�1. An important caveat to our conclusions for both p= 0�1 and p= 0�25
is that there is substantial variation in confidence bands as εN changes. This point un-
derscores the need for future work on the choice of εN .

Next consider the right plot, p = 0�5. Here we consider the conclusion that at least
half of people benefit from not being forced into military service. If we impose full condi-
tional independence, and accounting for sampling uncertainty, then we can allow con-
ditional rank invariance to fail for about 25% of the population. This is quite large, but
it relies on full conditional independence holding exactly. If we also relax conditional
independence to c = 0�03, then we need conditional rank invariance to hold for every-
one if we still want to conclude that at least 50% of people benefit from not being forced
into military service. 0�03 is smaller than both cage and chhSize. Hence we might not be
comfortable with such small values of c. This suggests the data do not definitively sup-
port the conclusion P(Y1 >Y0)≥ 0�5, even though our point estimate under the baseline
assumptions is 0�67.

Empirical conclusions

In this section we used our breakdown frontier methods to study the robustness of con-
clusions about ATE and P(Y1 > Y0) to failures of conditional independence and con-
ditional rank invariance. We first considered the conclusion that the average treatment
effect of not being abducted on log wages is nonnegative. Our point estimates suggest
that this conclusion is robust to deviations in unobserved latent propensity scores of
up to the same value as cage, which is also about two-thirds as large as chhSize; this ro-
bustness does not hold up when accounting for sampling uncertainty, however. We then
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considered the conclusion that at least p% of people earn higher wages when they are
not abducted. This conclusion is robust to large simultaneous relaxations of conditional
rank invariance and conditional independence for p = 10%. For p = 25%, this conclu-
sion continues to be robust to reasonable relaxations, although after accounting for the
variation in confidence bands over εN , this conclusion appears to be more sensitive to
conditional independence than to conditional rank invariance. This robustness to rank
invariance matches the findings of Heckman, Smith, and Clements (1997), who imposed
full independence and studied deviations from rank invariance. In their table 5B they
found that, in their empirical application, one could generally conclude that P(Y1 >Y0)

was at least 50%, regardless of the assumption on rank invariance. In our empirical ap-
plication our results are not quite as robust to rank invariance failures, which could be
because we use a different measure of relaxation of rank invariance, and also because of
differences in the empirical applications.

5. Conclusion

Summary

In this paper we advocated the breakdown frontier approach to sensitivity analysis.
Given a set of baseline assumptions, this approach defines the population breakdown
frontier as the weakest set of assumptions such that a specific conclusion of interest
holds. Sample analog estimates and lower uniform confidence bands allow researchers
to do inference on this frontier. The area under the confidence band is a quantitative,
finite sample measure of the robustness of a conclusion to relaxations of point identi-
fying assumptions. To examine this robustness, empirical researchers can present these
estimated breakdown frontiers and their accompanying confidence bands along with
traditional point estimates and confidence intervals obtained under point identifying
assumptions. We illustrated this general approach in the context of a treatment effects
model, where the robustness of conclusions about ATE and P(Y1 >Y0) to relaxations of
random assignment and rank invariance are examined. We applied these results in an
empirical study of the effect of child soldiering on wages. We found that weak conclu-
sions about P(Y1 > Y0) are fairly robust to failures of both rank invariance and random
assignment, but stronger conclusions are more sensitive to relaxations of random as-
signment.

Breakdown frontier analysis for other models and other relaxations

As discussed in Section 1, breakdown frontier analysis can in principle be done in most
models. In that section we outlined the six main steps required for any breakdown fron-
tier analysis. In this paper we illustrated this general approach by studying a single im-
portant and widely used model: the potential outcomes model with a binary treatment.
In future work it would be helpful to perform breakdown frontier analyses in other mod-
els. In particular, it may be possible to do breakdown frontier analyses in a large class of
models by using the general identification analysis in Chesher and Rosen (2017) or Tor-
govitsky (2019).
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A key conceptual step in any breakdown frontier analysis is deciding how to define
the indexed classes of assumptions such that the magnitude of the relaxation can be
reasonably interpreted. This is not easy, and will generally depend on the model, the
specific kind of assumption being relaxed, and the empirical context. Moreover, this
choice may affect our findings: A conclusion can be robust with respect to one mea-
sure of relaxation but not another. Thus one goal of future research is to explore this
space of assumption relaxations, to understand their substantive interpretations, and to
chart their implications for the robustness of empirical findings. In Masten and Poirier
(2016) we have already compared three different measures of relaxation of the random
assignment assumption, including the one used here. We further studied quantile inde-
pendence, a common relaxation of random assignment, in Masten and Poirier (2018b).
In the present paper, we also used a general method for spanning two discrete assump-
tions by defining a (1 − t)-percent relaxation, as we did with rank invariance. But much
work still remains to be done.

Appendix A: Related literature

We begin with the identification literature on breakdown points; as mentioned earlier,
here we use “breakdown” in the same sense as Horowitz and Manski’s (1995) identifi-
cation breakdown point. This breakdown point idea goes back to the one of the earliest
sensitivity analyses, performed by Cornfield, Haenszel, Hammond, Lilienfeld, Shimkin,
and Wynder (1959). They essentially asked how much correlation between a binary
treatment and an unobserved binary confounder must be present to fully explain an
observed correlation between treatment and a binary outcome, in the absence of any
causal effects of treatment. This level of correlation between treatment and the con-
founder is a kind of breakdown point for the conclusion that some causal effects of
treatment are nonzero. Their approach was substantially generalized by Rosenbaum
and Rubin (1983), which is discussed in detail in Chapter 22 of Imbens and Rubin (2015).
Neither Cornfield et al. (1959) nor Rosenbaum and Rubin (1983) formally defined break-
down points.

Horowitz and Manski (1995) gave the first formal definition and analysis of break-
down points. They studied a “contaminated sampling” model, where one observes a
mixture of draws from the distribution of interest and draws from some other distribu-
tion. An upper bound λ on the unknown mixing probability indexes identified sets for
functionals of the distribution of interest. They focus on a single conclusion: That this
functional is not equal to its logical bounds. They then define the breakdown point λ∗
as the largest λ such that this conclusion holds. Put differently, λ∗ is the largest mixing
probability we can allow while still obtaining a nontrivial identified set for our parame-
ter of interest. They also relate this “identification breakdown point” to the earlier break-
down point concepts studied in the robust statistics literature (e.g., Hampel, Ronchetti,
Rousseeuw, and Stahel (1986, pp. 96–98) and Huber and Ronchetti (2009, Section 1.4 and
Chapter 11)).

More generally, much work by Manski distinguishes between informative and
noninformative bounds (which the literature also sometimes calls tight and nontight
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bounds; see Section 7.2 of Ho and Rosen (2017)). The breakdown point is the bound-
ary between the informative and noninformative cases. For example, see his analysis
of bounds on quantiles with missing outcome data on page 40 of Manski (2007). There
the identification breakdown point for the τth quantile occurs when max{τ�1 − τ} is the
proportion of missing data. Similar discussions are given throughout the book.

Stoye (2005, 2010) generalizes the formal identification breakdown point concept by
noting that breakdown points can be defined for any claim about the parameter of inter-
est. He then studies a specific class of relaxations of the missing-at-random assumption
in a model of missing data. Kline and Santos (2013) studied a different class of relax-
ations of the missing-at-random assumption and also define a breakdown point based
on that class.

While all of these papers study a scalar breakdown point, Imbens (2003) studied a
model of treatment effects where deviations from conditional random assignment are
parameterized by two numbers r = (r1� r2). His parameter of interest θ(r) is point iden-
tified given a fixed value of r. Imbens’ Figures 1–4 essentially plot estimated level sets
of this function θ(r), in a transformed domain. While suggestive, these level sets do not
generally have a breakdown frontier interpretation. This follows since nonmonotonici-
ties in the function θ(r) lead to level sets which do not always partition the space of sen-
sitivity parameters into two connected sets in the same way that our breakdown frontier
does.

Manski and Pepper (2018) also studied a model where relaxations of baseline as-
sumptions are parameterized by a vector of numbers r. Unlike Imbens, however, they
derive identified sets indexed by r. These sets are weakly increasing (in the set inclusion
order) in each component of r, and hence the nonmonotonicity issue does not arise.
For a two-dimensional relaxation, their Table 2 presents identified sets as a function of a
grid of r = (r1� r2) values. The boundary between the italicized identified sets in that ta-
ble and the nonhighlighted sets is essentially a discrete approximation to the breakdown
frontier in their model, for the claim that the parameter of interest is positive. Similarly,
the boundary between the bold identified sets in that table and the nonhighlighted sets
is essentially a discrete approximation to the breakdown frontier in their model, for the
claim that the parameter of interest is negative.

Neither Horowitz and Manski (1995) nor Stoye (2005, 2010) discussed estimation or
inference of breakdown points. Imbens (2003) estimated his level sets in an empirical
application, but does not discuss inference. Manski and Pepper (2018) also do not dis-
cuss estimation of or inference on breakdown frontiers, although inference in their set-
ting is conceptually complicated—see their discussion on pages 234–235. Kline and San-
tos (2013), on the other hand, is the first and only paper we are aware of that explicitly
suggests doing inference on a breakdown point. We build on their work by proposing to
do inference on the multidimensional breakdown frontier. This allows us to study the
trade-off between different assumptions in drawing conclusions. They do study some-
thing they call a “breakdown curve,” but this is a collection of scalar breakdown points
for many different claims of interest, analogous to the collection of frontiers presented in
Figure 2. Inference on a frontier rather than a point also raises additional issues they did
not discuss; see our Appendix D in the Online Supplemental Material for more details.
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Moreover, we study a model of treatment effects while they look at a model of missing
data, hence our identification analysis is different.

Building on Horowitz and Manski (1995), Kreider, Pepper, Gundersen, and Jolliffe
(2012) combine a continuous relaxation sensitivity analysis for assumptions regarding
measurement error with various discrete relaxations of assumptions regarding treat-
ment selection. This allows them to study the interaction between these two kinds of
assumptions in drawing conclusions. For inference, they present confidence intervals
for partially identified parameters for a variety of values of the relaxations, rather than
doing inference on breakdown frontiers. See Gundersen, Kreider, and Pepper (2012) and
Kreider, Pepper, and Roy (2016) for further examples of identification analysis combin-
ing discrete and continuous relaxations.

Our breakdown frontier is a known functional of the distribution of outcomes given
treatment and covariates and the observed propensity scores. This functional is not
Hadamard differentiable, however, which prevents us from applying the standard func-
tional delta method to obtain its asymptotic distribution. Instead, we show that it is
Hadamard directionally differentiable, which allows us to apply the results of Fang and
Santos (2019). We then use the numerical bootstrap of Dümbgen (1993) and Hong and
Li (2018) to construct our confidence bands. For other applications of Hadamard di-
rectional differentiability, see Kaido (2016), Hansen (2017), and Lee and Bhattacharya
(2019).

Our identification analysis builds on two strands of literature. First is the literature
on relaxing statistical independence assumptions. There is a large literature on this, in-
cluding important work by Rosenbaum and Rubin (1983), Robins, Rotnitzky, and Scharf-
stein (2000), and Rosenbaum (1995, 2002). We apply results from our paper Masten and
Poirier (2018a), which discusses that literature in more detail. In that paper we did not
study estimation or inference. Second is the literature on identification of the distribu-
tion of treatment effects Y1 −Y0, especially without the rank invariance assumption. In
their introduction, Fan, Guerre, and Zhu (2017) provided a comprehensive discussion
of this literature; also see Abbring and Heckman (2007, Section 2). Here we focus on the
papers most related to our sensitivity analysis. Heckman, Smith, and Clements (1997)
performed a sensitivity analysis to the rank invariance assumption by fixing the value
of Kendall’s τ for the joint distribution of potential outcomes, and then varying τ from
−1 to 1; see Tables 5A and 5B. Their analysis is motivated by a search for breakdown
points, as evident in their Section 4 title, “How far can we depart from perfect depen-
dence and still produce plausible estimates of program impacts?” Nonetheless, they do
not formally define identified sets for parameters given their assumptions on Kendall’s
τ, and they do not formally define a breakdown point. Moreover, they do not suggest
estimating or doing inference on breakdown points. Gechter (2016) performed a sensi-
tivity analysis to the rank invariance assumption by fixing a lower bound on the value
of Spearman’s ρ. Under this assumption he derives the identified set for a certain av-
erage treatment effect. He then studies estimation and inference on this set for a fixed
value of the sensitivity parameter. Fan and Park (2009) provided formal identification
results for the joint cdf of potential outcomes and the distribution of treatment effects
under the known Kendall’s τ assumption. They also discuss how to extend those results
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to known Spearman’s ρ in their Remark 1. They provide estimation and inference meth-
ods for their bounds, but do not study breakdown points. Finally, none of these papers
study the specific relaxation of rank invariance we consider (as defined in Section 2).

In this section, we have focused narrowly on the papers most closely related to ours.
We situate our work more broadly in the literature on inference in sensitivity analyses in
Appendix D in the Online Supplemental Material. In that section we also briefly discuss
Bayesian inference, although we use frequentist inference in this paper.

Appendix B: Additional inference results and discussion

B.1 Asymptotic results for the bound functionals

In this section we provide asymptotic results for the various bound functionals dis-
cussed in this paper. These are preliminary results used in our breakdown analysis done
in Section 3. They can also be used on their own as inputs to traditional inference on
partially identified parameters.

First we establish convergence in distribution of the cdf bound estimators (14). Here
and throughout the paper we use the following notation: For an arbitrary set A and a
Banach space B, �∞(A�B) denotes the set of all maps z : A → B with finite sup-norm
‖z‖ = supa∈A ‖z(a)‖B , equipped with this norm. For example, see van der Vaart and Well-
ner (1996, p. 381).

Lemma 1. Suppose Assumptions A1, A3, and A4 hold. Let Y ⊂ R be a finite grid of points.
Then

√
N

(
F̂
c

Yx|W (y |w)− FcYx|W (y |w)
F̂
c
Yx|W (y |w)− FcYx|W (y |w)

)
� Z2(y�x�w� c)�

a tight random element of �∞(Y × {0�1} × supp(W )× C�R2).

Z2 is not Gaussian itself, but it is a continuous transformation of Gaussian processes.
For given (x� c�w), the limit will be Gaussian at all values of y except for

y ∈
{
QY |X�W

(
px|w − c

2px|w

∣∣∣ x�w)� QY |X�W
(
px|w + c

2px|w

∣∣∣ x�w)}�
Next we consider the conditional quantile bound estimators. Recall that C ∈

(0�min{p1|w�p0|w}) for all w ∈ supp(W ).

Lemma 2. Suppose Assumptions A1, A3, A4, and A5 hold. Then

√
N

(
Q̂
c

Yx|W (τ |w)−QcYx|W (τ |w)
Q̂
c

Yx|W (τ |w)−Qc
Yx|W (τ |w)

)
� Z3(τ�x�w� c)�

a mean-zero Gaussian process in �∞((0�1)× {0�1} × supp(W )× [0�C]�R2)with continu-
ous paths.
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This result is uniform in c on an interval, in x ∈ {0�1}, w ∈ supp(W ), and in τ ∈ (0�1).
This result directly implies convergence over c ∈ C as well. Unlike the distribution of
the cdf bounds estimators, this process is Gaussian. This follows by Hadamard differ-
entiability of the mapping between θ0 ≡ (FY |X�W (· | ·� ·)�p(·|·)� q(·)) and the conditional
quantile bounds.

Let the superscript Z(j) denotes the jth component of the vector Z. Since the CQTE
bounds are functionals of these conditional quantile bounds, Lemma 2 implies the fol-
lowing convergence result:

√
N

(
̂CQTE(τ� c |w)− CQTE(τ� c |w)
ĈQTE(τ� c |w)− CQTE(τ� c |w)

)
�
(

Z(1)3 (τ�1�w� c)− Z(2)3 (τ�0�w� c)
Z(2)3 (τ�1�w� c)− Z(1)3 (τ�0�w� c)

)
�

Similarly, Lemma 2 also implies

√
N

(
̂CATE(c |w)− CATE(c |w)
ĈATE(c |w)− CATE(c |w)

)
�

⎛⎜⎜⎝
∫ 1

0

(
Z(1)3 (u�1�w� c)− Z(2)3 (u�0�w� c)

)
du∫ 1

0

(
Z(2)3 (u�1�w� c)− Z(1)3 (u�0�w� c)

)
du

⎞⎟⎟⎠ �
a mean-zero Gaussian process in �∞(supp(W )× [0�C]�R2) with continuous paths.

Next consider the ATE bounds. The following decomposition implies that the esti-
mated ATE upper bound converges weakly to a Gaussian element:

√
N
(
ÂTE(c)− ATE(c)

)
= √

N

K∑
k=1

q̂wk
(̂CATE(c |wk)− CATE(c |wk)

)+ K∑
k=1

CATE(c |wk)
√
N(q̂wk − qwk)

�
K∑
k=1

qwk

∫ 1

0

(
Z(1)3 (u�1�wk� c)− Z(2)3 (u�0�wk� c)

)
du

+
K∑
k=1

CATE(c |wk)Z(3)1 (0�0�wk)�

A similar result holds for the estimated ATE lower bound.
The mapping used in equation (20) is called the pre-rearrangement operator. Cher-

nozhukov, Fernández-Val, and Galichon (2010) showed that this operator was Hadamard
differentiable when the quantile functions are continuously differentiable for all u ∈
(0�1). In our case, the underlying quantile functions are continuously differentiable on
(0�1/2)∪ (1/2�1), and continuous but not differentiable at u= 1/2. At this value, the left
and right derivatives exist and are finite, but are generally different from one another.
We extend the result of Chernozhukov, Fernández-Val, and Galichon (2010) to the case
where the quantile function has a point of nondifferentiability by showing Hadamard
directional differentiability of this mapping.

To do so, we make additional assumptions on the behavior of these quantile func-
tions.
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Assumption A6. For each c ∈ C and w ∈ supp(W ),

1. The number of elements in each of the sets

U∗
1 (c |w)= {u ∈ (0�1) : ∂−

u

(
Q
c
Y1|W (u |w)−Qc

Y0|W (u |w))= 0

or ∂+
u

(
Q
c
Y1|W (u |w)−Qc

Y0|W (u |w))= 0
}
�

U∗
2 (c |w)= {u ∈ (0�1) : ∂−

u

(
Qc
Y1|W (u |w)−QcY0|W (u |w))= 0

or ∂+
u

(
Qc
Y1|W (u |w)−QcY0|W (u |w))= 0

}
is finite.

2. The following hold:

(a) For any u ∈ U∗
1 (c |w),QcY1|W (u |w)−Qc

Y0|W (u |w) 
= z.

(b) For any u ∈ U∗
2 (c |w),Qc

Y1|W (u |w)−QcY0|W (u |w) 
= z.

These assumptions imply that the respective function’s derivatives change signs a
finite number of times. Therefore they cross the horizontal line at z a finite number
of times. These functions are continuously differentiable in u everywhere on (0�1/2) ∪
(1/2�1), and are directionally differentiable at 1/2. The second assumption rules out the
functions being flat when exactly valued at z. Failure of the second condition in this as-
sumption implies that convergence will hold uniformly over any compact subset that
excludes these values, which typically form a measure-zero set. Therefore this assump-
tion can be satisfied by considering convergence for values of c which exclude those
where the second part of Assumption A6 fails. Without knowing a priori at which values
this assumption may fail, selecting grid points randomly from a continuous distribution
ensures that these values are selected with probability zero.

An alternative approach to inference if the second condition fails for some values
of c is to smooth the population function using methods described in Appendix G in
the Online Supplemental Material. Like in Chernozhukov, Fernández-Val, and Galichon
(2010, Corollary 4), we require a tuning parameters to control the level of smoothing.
We show that

√
N-convergence holds for all parameter values when introducing any

amount of fixed smoothing.
Finally, note that Assumption A6 is refutable, since it is expressed as a function of

identified quantities, namely the CQTE bounds for all u ∈ (0�1).
With this additional assumption we can show

√
N-convergence of the bound esti-

mators in equation (20) uniformly in supp(W )× C.

Lemma 3. Suppose Assumptions A1, A3, A4, A5, and A6 hold. Then

√
N

(
P̂(c |w)− P(c |w)
P̂(c |w)− P(c |w)

)
� Z4(w� c)�

a tight random element in �∞(supp(W )× C�R2).
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As discussed in Section 3, we use Lemma 3 to establish the following result.

Lemma 4. Fix z ∈R. Suppose Assumptions A1, A3, A4, A5, and A6 hold. Then

√
N

(
̂DTE(z� c� t)− DTE(z� c� t)

D̂TE(z� c� t)− DTE(z� c� t)

)
� Z5(c� t)� (29)

a tight random element of �∞(C × [0�1]�R2)with continuous paths.

B.2 Estimation and inference with continuous covariates

The estimation and inference theory in Section 3 assumes that the covariatesW are dis-
cretely distributed (via Assumption A4). Those results are nonparametric in the sense
that they do not impose any restrictions on the conditional distribution of Y |X�W or
on the propensity score px|w. But they rule out continuous covariates. In this section, we
briefly discuss how to do estimation and inference with continuous covariates.

When some components of W are continuously distributed, a simple solution is to
discretize W and then apply the previous estimator. Alternatively, one can smooth over
different covariate values. This can be done using parametric, semiparametric, or non-
parametric estimators.

For example, especially if the dimension of W is large, one could use the usual logit
propensity score estimator

p̂1|w = P̂(X = 1 |W =w)=Λ(β̂′w
)
�

where Λ(a)= exp(a)/(1 + exp(a)) is the standard logit cdf and β̂ are the maximum like-
lihood estimated index coefficients. The conditional quantile function QY |X�W (τ | x�w)
can be estimated by a linear quantile regression of Y on (1�X�W ), so that

Q̂Y |X�W (τ | x�w)= γ̂(τ)′
⎛⎜⎝1
x

w

⎞⎟⎠ �
where γ̂(τ) are estimated linear quantile regression coefficients.

Using these parametric estimators, define

Q̂
c

Yx|W (τ |w)= Q̂Y |X�W
(
τ+ c

p̂x|w
min{τ�1 − τ} | x�w

)
and

Q̂
c

Yx|W (τ |w)= Q̂Y |X�W
(
τ− c

p̂x|w
min{τ�1 − τ} | x�w

)
as before. Since the asymptotic properties of β̂ and γ̂(·) are well known, it should be fea-
sible to derive the asymptotic distribution of the functionals in Section 3. Alternatively,
one could use semiparametric or nonparametric estimators of the propensity score px|w
and the conditional quantile function QY |X�W . Again, such first step estimators can be
plug-ins to obtain estimates of the various bounds we consider in Section 3. We leave a
full analysis of the asymptotic properties of these estimators to future work.
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B.3 Choosing the grid points C

Here we suggest two simple approaches for choosing the number and location of the
grid points C = {c1� � � � � cJ}. First, one can let C = {c1� � � � � cK} where K is the number of
observed covariates and, for each k ∈ {1� � � � �K}, ck is the maximal deviation between
the observed propensity score and the “leave out variable k” propensity score, which we
define and discuss in our empirical illustration on page 68. There we argue that these
are natural points to consider.

Second, researchers can choose equally spaced grid points, for a fixed J. This ap-
proach can be used in combination with the first approach. In this case, researchers
may want to begin with {c1� � � � � cK} and then add a multiple m of K additional points,
so that the total number of points J isK +mK for some positive integerm.

In practice one could choose J to be the minimum of 100 and some small proportion
of the sample size, like 5%. Values larger than 100 are not likely to affect the appearance
of plots like Figure 3. This is just a rough rule of thumb, however. Unfortunately we are
not aware of any clear data-driven way of picking the number of grid points. One op-
tion is to preestimate the points of nondifferentiability and then pick the grid points
sufficiently far from these points of nondifferentiability. Horowitz and Lee (2012, 2017)
discussed approaches like this in different settings. This approach, however, requires
choosing a tuning parameter which defines what it means to be “too far” from the points
of nondifferentiability, and it is not clear how to pick that parameter. Alternatively, we
can avoid selecting a grid by using the smoothing approach described in Appendix G in
the Online Supplemental Material. This approach requires choosing several smoothing
parameters, however. Until future research provides a clear best choice, we tentatively
recommend that researchers use the simple rule of thumb discussed above.

B.4 Bootstrap selection of εN

While Dümbgen (1993) and Hong and Li (2018) provide rate constraints on εN , they do
not recommend a procedure for picking εN in practice. In this section, we suggest a
heuristic bootstrap method for picking εN . We use this method for our empirical illus-
tration in Section 4; we also present the full range of bands considered. Since the ques-
tion of choosing εN goes beyond the purpose of the present paper, we defer a formal
analysis of this method to future research. For discussions of bootstrap selection of tun-
ing parameters in other problems, see Taylor (1989), Léger and Romano (1990), Marron
(1992), and Cao, Cuevas, and Manteiga (1994).

Fix a p. Let CPN(ε;FY�X�W ) denote the finite sample coverage probability of our
confidence band as described above, for a fixed ε. This statistic depends on the un-
known distribution of the data, FY�X�W . The bootstrap replaces FY�X�W with an estimator
F̂Y�X�W . We pick a grid {ε1� � � � � εL} of ε’s and let ε̂N solve

min
�=1�����L

∣∣CPN(ε�; F̂Y�X�W )− (1 − α)∣∣�
We compute CPN by simulation. In our empirical illustration, we take B = 500 draws.
We use the same grid of ε’s as in our Monte Carlo simulations in Appendix F in the On-
line Supplemental Material. Larger grids and larger values of B can be chosen subject to
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computational constraints. Note that the rate conditions on the tuning parameter will
automatically be satisfied for ε̂N if our initial grid satisfies ε1 ≤ · · · ≤ εL with ε1

√
N → ∞

and εL → 0 asN → ∞.
We furthermore must choose an estimator F̂Y�X�W . The nonparametric bootstrap

uses the empirical distribution. We use the smoothed bootstrap (De Angelis and Young
(1992), Polansky and Schucany (1997)). Specifically, we estimate the distribution of
(X�W ) by its empirical distribution. We then let F̂Y |X�W be a kernel smoothed cdf es-
timate of the conditional cdf of Y |X�W . We use the standard logistic cdf kernel and the
method proposed by Hansen (2004) to choose the smoothing bandwidths. We divide
these bandwidths in half since this visually appears to better capture the shape of the
conditional empirical cdfs, and since smaller order bandwidths are recommended for
the smoothed bootstrap (Section 4 of De Angelis and Young (1992)).

Bootstrap consistency requires sufficient smoothness of the functional of inter-
est in the underlying cdf. It may be that the lack of smoothness that requires us to
use the methods of Fang and Santos (2019) and Hong and Li (2018) in the first place
also cause the naive bootstrap to be inconsistent for approximating the distribution of
CPN(ε;FY�X�W ). As mentioned earlier, formally investigating this issue is beyond the
scope of this paper. Our goal here is merely to suggest a simple first-pass approach at
choosing εN .

Appendix C: Proofs

Proofs for Section 2

Proof of Theorem 1. Let F1(· | w) and F0(· | w) be any strictly increasing cdfs condi-
tional onW =w for any w ∈ supp(W ). Suppose (Y1�Y0) |W have joint cdf

FY1�Y0|W (y1� y0 |w)= C(F1(y1 |w)�F0(y0 |w) |w)�
Then

P(Y1 −Y0 ≤ z |W =w)=
∫

{y1−y0≤z}
dC
(
F1(y1 |w)�F0(y0 |w) |w)

= (1 − t)
∫

{y1−y0≤z}
dM
(
F1(y1 |w)�F0(y0 |w))

+ t
∫

{y1−y0≤z}
dH
(
F1(y1 |w)�F0(y0 |w) |w)�

whereM(u1�u0)= min{u1�u0}.
For fixed distributions (F1(· | w)�F0(· | w)), the first integral is the probability that

{Y1 − Y0 ≤ z} given W = w, where (Y1�Y0) | W are random variables that satisfy con-
ditional rank invariance. Hence for these random variables, the corresponding condi-
tional ranks are equal almost surely: U1 = U0 a.s. Let U ∼ Unif[0�1] denote this almost
sure common random variable. Using Assumption A1.1, we can thus write

(Y1�Y0) |W d= (F−1
1 (U |W )�F−1

0 (U |W ))
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and therefore∫
{y1−y0≤z}

dM
(
F1(y1 |w)�F0(y0 |w))= P

(
F−1

1 (U |w)− F−1
0 (U |w)≤ z)�

Makarov (1982) derived sharp bounds on∫
{y1−y0≤z}

dH
(
F1(y1)�F0(y0) |w)�

Applying these bounds yields∫
{y1−y0≤z}

dH
(
F1(y1 |w)�F0(y0 |w)) ∈ [max

{
sup

y∈Yz(w)

(
F1(y |w)− F0(y − z |w))�0

}
�

1 + min
{

inf
y∈Yz(w)

(
F1(y |w)− F0(y − z |w))�0

}]
�

Therefore, for givenw ∈ supp(W ) and given (F1(· |w)�F0(· |w)), sharp bounds for P(Y1 −
Y0 ≤ z |W =w) are given by[

θ
(
F1(· |w)�F0(· |w)

)
� θ
(
F1(· |w)�F0(· |w)

)]
�

where

θ
(
F1(· |w)�F0(· |w)

)= (1 − t)P(F−1
1 (U |w)− F−1

0 (U |w)≤ z)
+ tmax

{
sup

y∈Yz(w)

(
F1(y |w)− F0(y − z |w))�0

}
and

θ
(
F1(· |w)�F0(· |w)

)= (1 − t)P(F−1
1 (U |w)− F−1

0 (U |w)≤ z)
+ t
(

1 + min
{

inf
y∈Yz(w)

(
F1(y |w)− F0(y − z |w))�0

})
�

Define the first-order stochastic dominance ordering as follows: For two cdfs F
and G, let F �fsd G if F(t) ≥ G(t) for all t ∈ R. All of the following statements refer to
this ordering. For any fixed F1(· |w),

F̃0(· |w)�fsd F0(· |w) implies θ
(
F1(· |w)� F̃0(· |w)

)≤ θ(F1(· |w)�F0(· |w)
)
�

That is, the lower bound function θ(F1(· | w)�F0(· | w)) is weakly increasing in F0(· | w).
This can be shown in two steps. First, the expression

P
(
F−1

1 (U |w)− F−1
0 (U |w)≤ z)

is weakly increasing in F0(· | w) since, for F̃0(· | w) �fsd F0(· | w), we have F̃−1
0 (u | w) ≤

F−1
0 (u |w) for u ∈ (0�1), and therefore

P
(
F−1

1 (U |w)− F̃−1
0 (U |w)≤ z)≤ P

(
F−1

1 (U |w)− F−1
0 (U |w)≤ z)�
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Second, the expression

max
{

sup
y∈Yz(w)

(
F1(y |w)− F0(y − z |w))�0

}
is weakly increasing in F0(· |w) since the supremum and maximum operators are weakly
increasing. Thus both components of θ are weakly increasing in F0(· | w). Therefore,
their linear combination is also weakly increasing in F0(· |w).

We can similarly show that θ(F1(· | w)�F0(· | w)) is weakly decreasing in F1(· | w).
Thus substituting (

F1(· |w)�F0(· |w)
)= (FcY1|W (· |w)�F

c
Y0|W (· |w)

)
yields the lower bound CDTE(z� c� t |w). The upper bound function θ(F1(· |w)�F0(· |w))
is also weakly increasing in F0(· |w) and weakly decreasing in F1(· |w). Thus substituting(

F1(· |w)�F0(· |w)
)= (FcY1|W (· |w)�FcY0|W (· |w)

)
yields the upper bound CDTE(z� c� t | w). In making these substitutions we applied
Proposition 2 from Masten and Poirier (2018a). In that paper we defined functions
FcYx|W (· |w;ε�η), which we now use to show sharpness of the DTE bounds.

Substitute (
FcY1|W (· |w;ε�0)�FcY0|W (· |w;1 − ε�0)

)
into the bound functionals and continuously vary ε between [0�1]. Note that we letη= 0
since c <min{p1|w�p0|w}. By continuity of θ(·� ·) and θ(·� ·) in their arguments and con-
tinuity of (FcY1|W (· | w;ε�0)�FcY0|W (· | w;1 − ε�0)) in ε, the intermediate value theorem
implies that every element between the bounds can be attained.

By integrating these CDTE bounds over the marginal distribution of W , we obtain
the DTE bounds:[

DTE(z� c� t)�DTE(z� c� t)
]

=
[∫

supp(W )
CDTE(z� c� t |w)dFW (w)�

∫
supp(W )

CDTE(z� c� t |w)dFW (w)
]
�

Sharpness of these bounds results from the sharpness of the CDTE bounds for every
w ∈ supp(W ) and the joint attainability of{(

FcY1|W (· |w)�F
c
Y0|W (· |w)

) :w ∈ supp(W )
}

and of {(
F
c
Y1|W (· |w)�FcY0|W (· |w)

) :w ∈ supp(W )
}
�

Proofs for Sections 3 and B.1

The following lemma shows that (F̂Y |X�W (· | ·� ·)� p̂(·|·)� q̂(·)) converges uniformly in y,
x, and w to a mean-zero Gaussian process. This result follows by applying the delta
method.
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Lemma C1. Suppose Assumption A3 and Assumption A4 hold. Then

√
N

⎛⎜⎝F̂Y |X�W (y | x�w)− FY |X�W (y | x�w)
p̂x|w −px|w
q̂w − qw

⎞⎟⎠� Z1(y�x�w)�

a mean-zero Gaussian process in �∞(R×{0�1}×supp(W )�R3)with continuous paths and
covariance kernel equal to

Σ1(y�x�w� ỹ� x̃� w̃)

= E
[
Z1(y�x�w)Z1(ỹ� x̃� w̃)

′]

= diag

⎛⎜⎜⎜⎜⎝
FY |X�W

(
min{y� ỹ} | x�w)− FY |X�W (y | x�w)FY |X�W (ỹ | x�w)

px|wqw
1(x= x̃�w= w̃)

px|w
qw

1(x= x̃�w= w̃)− px|wpx̃|w
qw

1(w= w̃)
qw1(w= w̃)− qwqw̃

⎞⎟⎟⎟⎟⎠ �

Proof of Lemma C1. By a second-order Taylor expansion,

F̂Y |X�W (y | x�w)− FY |X�W (y | x�w)

=

1
N

N∑
i=1

1(Yi ≤ y)1(Xi = x�Wi =w)

1
N

N∑
i=1

1(Xi = x�Wi =w)
− P(Y ≤ y�X = x�W =w)

P(X = x�W =w)

=

1
N

N∑
i=1

1(Yi ≤ y)1(Xi = x�Wi =w)− P(Y ≤ y�X = x�W =w)

P(X = x�W =w)

− FY |X�W (y | x�w)
P(X = x�W =w)

(
1
N

N∑
i=1

1(Xi = x�Wi =w)− P(X = x�W =w)
)

+Op
[(

1
N

N∑
i=1

1(Yi ≤ y)1(Xi = x�Wi =w)− FY |X�W (y | x�w)P(X = x�W =w)
)

·
(

1
N

N∑
i=1

1(Xi = x�Wi =w)− P(X = x�W =w)
)]

+Op
[(

1
N

N∑
i=1

1(Xi = x�Wi =w)− P(X = x�W =w)
)2]

�

By standard bracketing entropy results (e.g., example 19.6 on p. 271 of van der Vaart
(2000)) the function classes {1(Y ≤ y)1(X = x)1(W =w) : y ∈ R�x ∈ {0�1}�w ∈ supp(W )}
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and {1(X = x)1(W = w) : x ∈ {0�1}�w ∈ supp(W )} are both P-Donsker. Hence the resid-
ual is of order Op(N−1) uniformly in (y�x�w) ∈ R × {0�1} × supp(W ). Combining this
with Slutsky’s theorem, we get the uniform over y, x, and w asymptotically linear repre-
sentation

F̂Y |X�W (y | x�w)− FY |X�W (y | x�w)

= 1
N

N∑
i=1

1(Xi = x�Wi =w)
(
1(Yi ≤ y)− FY |X�W (y | x�w))

P(X = x�W =w) + op
(
N−1/2)�

By the same bracketing entropy arguments, the class{
1(X = x�W =w)(1(Y ≤ y)− FY |X�W (y | x�w))

P(X = x�W =w) : y ∈R�x ∈ {0�1}�w ∈ supp(W )
}

is P-Donsker, and hence
√
N(F̂Y |X�W (· | ·� ·)− FY |X�W (· | ·� ·)) converges in distribution

to a mean-zero Gaussian process with continuous paths.
A similar argument yields the asymptotically linear representations

p̂x|w −px|w = 1
N

N∑
i=1

1(Wi =w)
(
1(Xi = x)−px|w

)
qw

+ op
(
N−1/2)

and

q̂w − qw = 1
N

N∑
i=1

(
1(Wi =w)− qw

)
�

The covariance kernel Σ1 can be calculated as follows:[
Σ1(y�x�w� ỹ� x̃� w̃)

]
1�1

= E

[
1(Xi = x�Wi =w)1(Xi = x̃�Wi = w̃)

(
1(Yi ≤ y)− FY |X�W (y | x�w))(1(Yi ≤ ỹ)− FY |X�W (ỹ | x̃� w̃))

P(X = x�W =w)P(X = x̃�W = w̃)
]

= FY |X�W
(
min{y� ỹ} | x�w)− FY |X�W (y | x�w)FY |X�W (ỹ | x�w)

px|wqw
1(x= x̃�w= w̃)�[

Σ1(y�x�w� ỹ� x̃� w̃)
]

1�2

= E

[
1(Xi = x�Wi = w̃)

(
1(Xi = x̃)−px̃|w̃

)(
1(Yi ≤ y)− FY |X�W (y | x�w))

px|wqwqw̃

]
= 0�[

Σ1(y�x�w� ỹ� x̃� w̃)
]

1�3

= E

[(
1(Wi = w̃)− qw̃

)
1(Xi = x�Wi =w)

(
1(Yi ≤ y)− FY |X�W (y | x�w))

P(X = x�W =w)
]

= 0�[
Σ1(y�x�w� ỹ� x̃� w̃)

]
2�1 = [Σ1(ỹ� x̃� w̃� y�x�w)

]
1�2 = 0�
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Σ1(y�x�w� ỹ� x̃� w̃)

]
2�2

= E

[
1(Wi =w)1(Wi = w̃)

(
1(Xi = x)−px|w

)(
1(Xi = x̃)−px̃|w̃

)
qwqw̃

]
= px|w

qw
1(x= x̃�w= w̃)− px|wpx̃|w

qw
1(w= w̃)�

[
Σ1(y�x�w� ỹ� x̃� w̃)

]
2�3 = E

[(
1(Wi = w̃)− qw̃

)(
1(Xi = x)−px|w

)
qw

]
= 0�[

Σ1(y�x�w� ỹ� x̃� w̃)
]

3�1 = [Σ1(ỹ� x̃� w̃� y�x�w)
]

1�3 = 0�[
Σ1(y�x�w� ỹ� x̃� w̃)

]
3�2 = [Σ1(ỹ� x̃� w̃� y�x�w)

]
2�3 = 0�[

Σ1(y�x�w� ỹ� x̃� w̃)
]

3�3 = E
[(

1(Wi =w)− qw
)(

1(Wi = w̃)− qw̃
)]

= qw1(w= w̃)− qwqw̃�

Lemma C2 (Chain rule for Hadamard directionally differentiable functions). Let D, E,
and F be Banach spaces with norms ‖ · ‖D, ‖ · ‖E, and ‖ · ‖F. Let Dφ ⊆ D and Eψ ⊆ E. Let
φ : Dφ → Eψ and ψ : Eψ → F be functions. Let θ ∈ Dφ and φ be Hadamard directionally
differentiable at θ tangentially to D0 ⊆ D. Let ψ be Hadamard directionally differentiable
at φ(θ) tangentially to the range φ′

θ(D0)⊆ Eψ. Then ψ ◦φ : Dφ → F is Hadamard direc-
tionally differentiable at θ tangentially to D0 with Hadamard directional derivative equal
to ψ′

φ(θ) ◦φ′
θ.

This result is a version of proposition 3.6 in Shapiro (1990), who omits the proof. We
give the proof here because this result is key to our paper.

Proof of Lemma C2. Let {hn}n≥1 be in D and hn → h ∈ D0. By Hadamard directional
differentiability of φ tangentially to D0,∥∥∥∥φ(θ+ tnhn)−φ(θ)

tn
−φ′

θ(h)

∥∥∥∥
E

= o(1)

as n→ ∞ for any tn ↘ 0. That is,

gn ≡ φ(θ+ tnhn)−φ(θ)
tn

E→φ′
θ(h)= g�

where φ′
θ ∈φ′

θ(D0). Therefore, by Hadamard directional differentiability of ψ, we have

ψ
(
φ(θ+ tnhn)

)−ψ(φ(θ))
tn

= ψ
(
φ(θ)+ tngn

)−ψ(φ(θ))
tn

F→ψ′
φ(θ)(g)=ψ′

φ(θ)

(
φ′
θ(h)
)
�

By Hadamard directional differentiability of φ at θ and ψ at φ(θ), φ′
θ and ψ′

φ(θ) are con-
tinuous mappings. Hence their composition ψ′

φ(θ) ◦ φ′
θ is continuous. This combined

with our derivations above imply thatψ◦φ is Hadamard directionally differentiable tan-
gentially to D0 at θ.
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Proof of Lemma 1. Let θ0 = (FY |X�W (· | ·� ·)�p(·|·)� q(·)) and θ̂ = (F̂Y |X�W (· | ·� ·)� p̂(·|·)�
q̂(·)). For fixed y and c, define the mapping

φ1 : �∞(R× {0�1} × supp(W )
)× �∞({0�1} × supp(W )

)× �∞(supp(W )
)

→ �∞
({0�1} × supp(W )�R2)

by

[
φ1(θ)

]
(x�w)=

⎛⎜⎜⎜⎝
min
{
θ(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)− c �
θ(1)(y�x�w)θ(2)(x�w)+ c

θ(2)(x�w)+ c
}

max
{
θ(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)+ c �
θ(1)(y�x�w)θ(2)(x�w)− c

θ(2)(x�w)− c
}
⎞⎟⎟⎟⎠ �

where θ(j) is the jth component of θ. Note that(
F
c
Yx|W (y |w)
FcYx|W (y |w)

)
= [φ1(θ0)

]
(x�w)�

(
F̂
c

Yx|W (y |w)
F̂
c
Yx|W (y |w)

)
= [φ1(θ̂)

]
(x�w)�

The maps (a1� a2) �→ min{a1� a2} and (a1� a2) �→ max{a1� a2} are Hadamard directionally
differentiable with Hadamard directional derivatives at (a1� a2) equal to

h �→

⎧⎪⎪⎨⎪⎪⎩
h(1) if a1 < a2�

min
{
h(1)�h(2)

}
if a1 = a2�

h(2) if a1 > a2

and

h �→

⎧⎪⎪⎨⎪⎪⎩
h(2) if a1 < a2�

max
{
h(1)�h(2)

}
if a1 = a2�

h(1) if a1 > a2

respectively, where h ∈R2; for example, see equation (18) in Fang and Santos (2015). The
mapping φ1 is comprised of compositions of these min and max operators, along with
four other functions. We can show that these four mappings are ordinary Hadamard
differentiable. Here, we compute these Hadamard derivatives with respect to θ:

[
δ1(θ)

]
(x�w) = θ(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)+ c has Hadamard derivative equal to

[
δ′

1�θ(h)
]
(x�w) = θ(1)(y�x�w)h(2)(x�w)+ h(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)+ c

− θ(1)(y�x�w)θ(2)(x�w)h(2)(x�w)(
θ(2)(x�w)+ c)2 �
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[
δ2(θ)

]
(x�w) = θ(1)(y�x�w)θ(2)(x�w)− c

θ(2)(x�w)− c has Hadamard derivative equal to

[
δ′

2�θ(h)
]
(x�w) = θ(1)(y�x�w)h(2)(x�w)+ h(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)− c

−
(
θ(1)(y�x�w)θ(2)(x�w)− c)h(2)(x�w)(

θ(2)(x�w)− c)2 �

[
δ3(θ)

]
(x�w) = θ(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)− c has Hadamard derivative equal to

[
δ′

3�θ(h)
]
(x�w) = θ(1)(y�x�w)h(2)(x�w)+ h(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)− c

− θ(1)(y�x�w)θ(2)(x�w)h(2)(x�w)(
θ(2)(x�w)− c)2 �

[
δ4(θ)

]
(x�w) = θ(1)(y�x�w)θ(2)(x�w)+ c

θ(2)(x�w)+ c has Hadamard derivative equal to

[
δ′

4�θ(h)
]
(x�w) = θ(1)(y�x�w)h(2)(x�w)+ h(1)(y�x�w)θ(2)(x�w)

θ(2)(x�w)+ c

−
(
θ(1)(y�x�w)θ(2)(x�w)+ c)h(2)(x�w)(

θ(2)(x�w)+ c)2 �

All these derivatives are well defined at θ0 because θ(2)0 (x�w) = px|w > C ≥ c. With this
notation, we can write the functional φ1 as

φ1(θ)=
(

min
{
δ3(θ)�δ4(θ)

}
max
{
δ1(θ)�δ2(θ)

}) �
By the chain rule (Lemma C2), the mapφ1 is Hadamard directionally differentiable at θ0
with Hadamard directional derivative evaluated at θ0 equal to

φ′
1�θ0

(h)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(
δ3(θ0) < δ4(θ0)

) · δ′
4�θ0

(h)

+ 1
(
δ3(θ0)= δ4(θ0)

) · min
{
δ′

3�θ0
(h)�δ′

4�θ0
(h)
}

+ 1
(
δ3(θ0) > δ4(θ0)

) · δ′
3�θ0

(h)

1
(
δ1(θ0) < δ2(θ0)

) · δ′
1�θ0

(h)

+ 1
(
δ1(θ0)= δ2(θ0)

) · max
{
δ′

1�θ0
(h)�δ′

2�θ0
(h)
}

+ 1
(
δ1(θ0) > δ2(θ0)

) · δ′
2�θ0

(h)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

By Lemma C1,
√
N(θ̂(y�x�w) − θ0(y�x�w)) � Z1(y�x�w). Hence we can use the delta

method for Hadamard directionally differentiable functions (see Theorem 2.1 in Fang
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and Santos (2019)) to find that[√
N
(
φ1(θ̂)−φ1(θ0)

)]
(x�w)�

[
φ′

1�θ0
(Z1)
]
(x�w)

≡ Z̃2(x�w)�

This result holds uniformly over any finite grid of values for y ∈ R and c ∈ C by consider-
ing the Hadamard directional differentiability of a vector of these mappings indexed at
different values of y and c, which yields the process Z2(y�x�w� c).

Proof of Lemma 2. Let S = {(y�x�w) ∈ R2 : y ∈ [y
x
(w)� yx(w)]�x ∈ {0�1}�w ∈ supp(W )}.

Let D(S) ⊂ �∞(S) denote the set of functions that are càdlàg in the first argument for
each x ∈ {0�1} and w ∈ supp(W ). Define the mapping

φ̃2 : D(S)× �∞({0�1} × supp(W )
)× �∞(supp(W )

)→ �∞
(
(0�1)× {0�1} × supp(W )�R2)

by

[
φ̃2(θ)

]
(τ�x�w)=

((
θ(1)
)−1
(τ�x�w)

θ(2)(x�w)

)
�

By Assumptions A1, A3, A5, and Lemma 21.4(ii) in van der Vaart (2000) this map-
ping is Hadamard differentiable at θ0 tangentially to C (S) × �∞({0�1} × supp(W )) ×
�∞(supp(W )), where C (S)⊂ �∞(S) is the set functions that are continuous in the first ar-
gument for each x ∈ {0�1} and w ∈ supp(W ). Its Hadamard derivative at θ0 = (FY |X�W (· |
·� ·)�p(·|·)� q(·)) is

[
φ̃′

2�θ0
(h)
]
(τ�x�w) �→

(
− h(1)

(
QY |X�W (τ | x�w)�x�w)

fY |X�W
(
QY |X�W (τ | x�w) | x�w) �h(2)(x�w)

)
�

By the functional delta method and Theorem 7.3.3 part (iii) of Bickel and Doksum (2015),[√
N
(
φ̃2(θ̂)− φ̃2(θ0)

)]
(τ�x�w)� Z̃3(τ�x�w)�

where Z̃3 is a mean-zero Gaussian process in �∞((0�1)× {0�1} × supp(W )�R2) with uni-
formly continuous paths.

Now define the mapping

φ2 : �∞((0�1)× {0�1} × supp(W )
)× �∞({0�1} × supp(W )

)
→ �∞

(
(0�1)× {0�1} × supp(W )× [0�C]�R2)

by

[
φ2(ψ)

]
(τ�x�w� c)=

⎛⎜⎜⎝ψ
(1)
(
τ+ c

ψ(2)(x�w)
min{τ�1 − τ}�x�w

)
ψ(1)
(
τ− c

ψ(2)(x�w)
min{τ�1 − τ}�x�w

)
⎞⎟⎟⎠ �
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Then (
Q
c
Yx|W (τ |w)

Qc
Yx|W (τ |w)

)
= [φ2

(
φ̃2(θ0)

)]
(τ�x�w� c)�

(
Q̂
c

Yx|W (τ |w)
Q̂
c

Yx|W (τ |w)

)
= [φ2

(
φ̃2(θ̂)

)]
(τ�x�w� c)�

We will show thatφ2 is Hadamard differentiable tangentially to the space CU((0�1)×
{0�1}× supp(W ))×�∞({0�1}× supp(W )), where CU(A) denotes the set of uniformly con-
tinuous functions on A. The Hadamard derivative of the first component ofφ2 evaluated
at ψ0 ≡ φ̃2(θ0) is[

φ(1)′2�ψ0
(h)
]
(τ�x�w� c)

= h(1)
(
τ+ c

ψ
(2)
0 (x�w)

min{τ�1 − τ}�x�w
)

−ψ(1)′0

(
τ+ c

ψ
(2)
0 (x�w)

min{τ�1 − τ}�x�w
)
cmin{τ�1 − τ}(
ψ(2)0 (x�w)

)2 h(2)(x�w)�
To see this, a Taylor expansion gives

[
φ(1)2 (ψ0 + tnhn)−φ(1)2 (ψ0)

tn

]
(τ�x�w� c)

= h(1)n
(
τ+ c

ψ(2)0 (x�w)+ tnh(2)n (x�w)
min{τ�1 − τ}�x�w

)

−ψ(1)′0

(
τ+ c

ψ(2)0 (x�w)+ an(x�w)
min{τ�1 − τ}�x�w

)

× cmin{τ�1 − τ}(
ψ
(2)
0 (x�w)+ an(x�w)

)2h(2)n (x�w)

using the fact thatψ(1)0 (τ�x�w)=QY |X(τ | x�w) is continuously differentiable in τ by As-

sumption A5.2, and noting that term an(x�w) satisfies |an(x�w)| ≤ |tnh(2)n (x�w)| =O(tn).
Next,

sup
τ�x�w�c

∣∣∣∣h(1)n (τ+ cmin{τ�1 − τ}
ψ(2)0 (x�w)+ tnh(2)n (x�w)

�x�w

)

− h(1)
(
τ+ cmin{τ�1 − τ}

ψ
(2)
0 (x�w)

�x�w

)∣∣∣∣
≤ sup
τ�x�w�c

∣∣∣∣h(1)n (τ+ cmin{τ�1 − τ}
ψ
(2)
0 (x�w)+ tnh(2)n (x�w)

�x�w

)
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− h(1)
(
τ+ cmin{τ�1 − τ}

ψ
(2)
0 (x�w)+ tnh(2)n (x�w)

�x�w

)∣∣∣∣
+ sup
τ�x�w�c

∣∣∣∣h(1)(τ+ cmin{τ�1 − τ}
ψ
(2)
0 (x�w)+ tnh(2)n (x�w)

�x�w

)

− h(1)
(
τ+ cmin{τ�1 − τ}

ψ
(2)
0 (x�w)

�x�w

)∣∣∣∣
≤ ∥∥h(1)n − h(1)∥∥∞ + o(1)
= o(1)�

where all three suprema are taken over τ ∈ (0�1), x ∈ {0�1}, w ∈ supp(W ), c ∈ [0�C]. The
last inequality follows from uniform continuity of h(1). The last line follows from uniform
convergence of hn to h.

Similarly, we have that

sup
τ�x�w�c

∣∣∣∣ψ(1)′0

(
τ+ c

ψ
(2)
0 (x�w)+ an(x�w)

min{τ�1 − τ}�x�w
)

× cmin{τ�1 − τ}(
ψ(2)0 (x�w)+ an(x�w)

)2h(2)n (x�w)

−ψ(1)′0

(
τ+ c

ψ(2)0 (x�w)
min{τ�1 − τ}�x�w

)

× cmin{τ�1 − τ}(
ψ
(2)
0 (x�w)

)2 h(2)(x�w)
∣∣∣∣= o(1)

by uniform continuity of ψ(1)′0 (implied by Assumption A5.2) and by an(x�w) = o(1).
Again, the sup is over τ ∈ (0�1), x ∈ {0�1}, w ∈ supp(W ), c ∈ [0�C]. Therefore φ(1)2 is
Hadamard differentiable tangentially to the space of uniformly continuous functions.
A similar argument can be made for φ(2)2 . By composition, φ2 ◦ φ̃2 is Hadamard differ-
entiable tangentially to C (S).

By the functional delta method and the fact that Z̃3(y�x�w) has uniformly continu-
ous paths, we have that[√

N
(
φ2
(
φ̃2(θ̂)

)−φ2
(
φ̃2(θ0)

))]
(τ�x�w� c)�

[
φ′

2�ψ0
◦ φ̃′

2�θ0
(Z1)
]
(τ�x�w� c)

≡ Z3(τ�x�w� c)�

a mean-zero Gaussian process with continuous paths in τ ∈ (0�1) and c ∈ [0�C].

Proof of Proposition 1. Consider the lower CQTE bound of equation (8) as a func-
tion of c. Its first component is the lower bound of the conditional quantile ofY1 |W =w.
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By Assumption A5.2, the derivative of that conditional quantile with respect to c equals

∂

∂c
QY |X�W

(
τ− c

p1|w
min{τ�1 − τ}

∣∣∣ 1�w)
= −min{τ�1 − τ}
p1|wfY |X�W

(
QY |X�W

(
τ− c

p1|w
min{τ�1 − τ}

∣∣∣ 1�w) ∣∣∣ 1�w) �
The second component of the lower CQTE bound is the upper bound of the condi-
tional quantile of Y0 | W = w. The derivative of that conditional quantile with respect
to c equals

∂

∂c
QY |X�W

(
τ+ c

p0|w
min{τ�1 − τ}

∣∣∣ 0�w)
= min{τ�1 − τ}
p0|wfY |X�W

(
QY |X�W

(
τ+ c

p0|w
min{τ�1 − τ}

∣∣∣ 0�w) ∣∣∣ 0�w) �
Moreover, these derivatives are bounded away from zero and infinity uniformly over c ∈
(0�C]. This implies that the derivative of the CQTE is negative and uniformly bounded
away from zero.

Next recall that

CATE(c |w)=
∫ 1

0
CQTE(τ� c |w)dτ�

Its derivative with respect to c exists by the dominated convergence theorem (by As-
sumptions A1 and A5). Moreover, it is bounded away from zero for all c ∈ (0�C]. By taking
another expectation over the marginal distribution ofW , ∂ATE(c)/∂c exists (by Assump-
tion A4), is negative, and is bounded away from zero for all c ∈ (0�C].

c∗ is defined implicitly by ATE(c∗)= μ. We have shown that the function ATE(c) sat-
isfies the assumptions of Lemma 21.3 on page 306 of van der Vaart (2000). Thus the map-
ping ATE(·) �→ c∗ is Hadamard differentiable tangentially to the set of càdlàg functions
on (0�C] with derivative

−h(c∗)
∂

∂c
ATE
(
c∗
) �

By the discussion following Lemma 2,
√
N(ÂTE(c) − ATE(c)) converges in distribution

to a random element of �∞([0�C]) with continuous paths.
Let

c̃∗ = inf
{
c ∈ [0�C] : ÂTE(c)≤ μ}�

We can then apply the functional delta method to see that
√
N(c̃∗ − c∗) converges in

distribution to a Gaussian variable we denote by Zbp.
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Since c∗ ∈ (0�C] and by monotonicity of ATE(·), we have ATE(C) ≤ μ. By
√
N-

convergence of the ATE bounds,

P
(
ÂTE(C) > μ

)= P
(−√

N
(
ATE(C)−μ)<√

N
(
ÂTE(C)− ATE(C)

))
→ 0�

Therefore, the set {c ∈ [0�C] : ÂTE(c) ≤ μ} is nonempty with probability approaching
one. This implies that c̃∗ ∈ [0�C] with probability approaching one and therefore P(c̃∗ =
ĉ∗) also approaches one asN → ∞. Using these results, we obtain

√
N
(̂
c∗ − c∗)= √

N
(̂
c∗ − c̃∗)+ √

N
(
c̃∗ − c∗)

= op(1)+ √
N
(
c̃∗ − c∗)

� Zbp�

The following result extends Proposition 2(i) of Chernozhukov, Fernández-Val, and
Galichon (2010) to allow for input functions which are directionally differentiable, but
not fully differentiable, at one point. It can be extended to allow for multiple points of
directional differentiability, but we omit this since we do not need it for our application.

Lemma C3. Let θ0(u� c�w)= (θ(1)0 (u� c�w)�θ
(2)
0 (u� c�w)) where for j ∈ {1�2} we have that

θ
(j)
0 (u� c�w) is bounded above and below, and differentiable everywhere except at u= u∗,

where it is directionally differentiable. Further, assume that the two components satisfy
Assumption A6. Then, for fixed z ∈ R, the mapping φ3 : �∞((0�1)× supp(W )× C�R2)→
�∞(supp(W )× C�R2) defined by

[
φ3(θ)

]
(w� c)=

⎛⎜⎜⎝
∫ 1

0
1
(
θ(2)(u� c�w)≤ z)du∫ 1

0
1
(
θ(1)(u� c�w)≤ z)du

⎞⎟⎟⎠
is Hadamard directionally differentiable tangentially to C ((0�1)× supp(W )×C�R2)with
Hadamard directional derivative given by equations (30) and (31) below.

Proof of Lemma C3. For clarity we suppress the dependence on w in the expressions
below. Uniformity of convergence over w ∈ supp(W ) follows from the discreteness of
supp(W ) (Assumption A4). Our proof follows that of Proposition 2(i) in Chernozhukov,
Fernández-Val, and Galichon (2010). Let

U1(c)= {u ∈ (0�1) : θ(1)0 (u� c)= z}
denote the set of roots to the equation θ(1)0 (u� c) = z for fixed z and c. By Assump-
tion A6.1, this set contains a finite number of elements. We denote these by

U1(c)= {u(1)k (c)� for k= 1�2� � � � �K(1)(c) <∞}�
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Assumption A6.1 also implies that U1(c)∩ U∗
1 (c)= ∅ for any c ∈ C.

We will show the first component of the Hadamard directional derivative is given by

[
φ(1)′3�θ0

(h)
]
(c)= −

K(1)(c)∑
k=1

h
(
u(1)k (c)� c

)(1
(
h
(
u(1)k (c)� c

)
> 0
)∣∣∂−

u θ
(1)
0

(
u(1)k (c)� c

)∣∣ + 1
(
h
(
u(1)k (c)� c

)
< 0
)∣∣∂+

u θ
(1)
0

(
u(1)k (c)� c

)∣∣
)
� (30)

where h ∈ C ((0�1)× C).
First, suppose u∗ /∈ U1(c) for any c ∈ C. In this case we can apply Proposition 2(i) of

Chernozhukov, Fernández-Val, and Galichon (2010) directly to obtain∣∣∣∣∣
[
φ(1)3 (θ0 + tnhn)

]
(c)− [φ(1)3 (θ0)

]
(c)

tn
−
(

−
K(1)(c)∑
k=1

h
(
u
(1)
k (c)� c

)∣∣∂uθ(1)0

(
u(1)k (c)� c

)∣∣
)∣∣∣∣∣= o(1)

for any c ∈ C, where tn ↘ 0, hn ∈ �∞((0�1)× C), and

sup
(u�c)∈(0�1)×C

∣∣hn(u� c)− h(u� c)∣∣= o(1)
as n→ ∞. Hence

[
φ
(1)′
3�θ0

(h)
]
(c)= −

K(1)(c)∑
k=1

h
(
u(1)k (c)� c

)∣∣∂uθ(1)0

(
u
(1)
k (c)� c

)∣∣ �
a linear map in h.

Now suppose u∗ ∈ U1(c) for some c ∈ C. Without loss of generality, let u(1)1 (c) = u∗.
Let Bε(u) denote a ball of radius ε centered at u. By equation (A.1) in Chernozhukov,
Fernández-Val, and Galichon (2010), for any δ > 0 there exists an ε > 0 and a large
enough n such that[

φ
(1)
3 (θ0 + tnhn)

]
(c)− [φ(1)3 (θ0)

]
(c)

tn

≤
K(1)(c)∑
k=1

∫
Bε(u

(1)
k (c))

1
(
θ0(u� c)+ tn

(
h
(
u
(1)
k (c)� c

)− δ)≤ z)− 1
(
θ0(u� c)≤ z)

tn
du�

Likewise, for any δ > 0 there exists ε > 0 and large enough n such that[
φ
(1)
3 (θ0 + tnhn)

]
(c)− [φ(1)3 (θ0)

]
(c)

tn

≥
K(1)(c)∑
k=1

∫
Bε(u

(1)
k (c))

1
(
θ0(u� c)+ tn

(
h
(
u
(1)
k (c)� c

)+ δ)≤ z)− 1
(
θ0(u� c)≤ z)

tn
du�

The k= 1 element in the first sum is∫
Bε(u∗)

1
(
θ0(u� c)+ tn

(
h
(
u∗� c
)− δ)≤ z)− 1

(
θ0(u� c)≤ z)

tn
du�
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θ0(u� c) is absolutely continuous in u and, by the change of variables formula for abso-
lutely continuous functions, the transformation z′ = θ0(u� c) implies that this k= 1 term
is

1
tn

∫
J1∩[z�z−tn(h(u∗�c)−δ)]

1∣∣∂uθ0
(
θ−1

0

(
z′� c
)
� c
)∣∣ dz′�

where J1 is the image of Bε(u∗) under θ0(·� c) and the change of variables follows
from the monotonicity of θ0 in Bε(u

∗) for small enough ε (this monotonicity follows
from Assumption A6.1, which implies that the derivative of θ0 changes sign a finite
number of times). The closed interval [z� z − tn(h(u

∗� c) − δ)] should be interpreted as
[z− tn(h(u∗� c)− δ)� z] when z− tn(h(u∗� c)− δ) < z. Next consider three cases:

1. When h(u∗� c) > 0, the interval [z� z − tn(h(u
∗� c)− δ)] has the form [z − ψn�z] for

an arbitrarily small ψn > 0. Therefore the denominator |∂uθ0(θ
−1
0 (z′� c)� c)| converges to

|∂−
u θ0(u

∗� c)| as n→ ∞, by continuous differentiability on (0�u∗), directional differentia-
bility at u= u∗, and by θ−1

0 (z′� c)= u∗ + o(1). This holds by z′ ∈ [z − tn(h(u∗� c)− δ)� z],
an interval shrinking to {z}. Therefore,

1
tn

∫
J1∩[z�z−tn(h(u∗�c)−δ)]

1∣∣∂uθ0
(
θ−1

0

(
z′� c
)
� c
)∣∣ dz′

= 1
tn

∫ z

z−tn(h(u∗�c)−δ)
1∣∣∂−

u θ0
(
u∗� c
)∣∣+ o(1) dz′

= −h(u∗� c
)+ δ∣∣∂−

u θ0
(
u∗� c
)∣∣ + o(1)�

By a similar argument,∫
Bε(u∗)

1
(
θ0(u� c)+ tn

(
h
(
u∗� c
)+ δ)≤ z)− 1

(
θ0(u� c)≤ z)

tn
du= −h(u∗� c

)− δ∣∣∂−
u θ0
(
u∗� c
)∣∣ + o(1)�

Letting δ > 0 be arbitrarily small and by the squeeze theorem, we obtain

[
φ(1)3 (θ0 + tnhn)

]
(c)− [φ(1)3 (θ0)

]
(c)

tn
= −

K(1)(c)∑
k=1

h
(
u(1)k (c)� c

)∣∣∂−
u θ

(1)
0

(
u(1)k (c)� c

)∣∣ + o(1)�
2. When h(u∗� c) < 0, the interval [z� z − tn(h(u

∗� c) − δ)] is of the form [z� z + ψn]
for arbitrarily small ψn > 0. Using the same argument as in case 1, |∂uθ0(θ

−1
0 (z′� c)� c)|

converges to |∂+
u θ0(u

∗� c)| as n→ ∞. Therefore, proceeding as in the previous case, we
obtain that[

φ(1)3 (θ0 + tnhn)
]
(c)− [φ(1)3 (θ0)

]
(c)

tn
= −

K(1)(c)∑
k=1

h
(
u
(1)
k (c)� c

)∣∣∂+
u θ

(1)
0

(
u(1)k (c)� c

)∣∣ + o(1)�
3. When h(u∗� c)= 0, this k= 1 term converges to zero.
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Combining these three cases into a single expression, we find that

1
tn

∫
J1∩[z�z−tn(h(u∗�c)−δ)]

1∣∣∂uθ0
(
θ−1

0

(
z′� c
)
� c
)∣∣ dz′

= −h(u∗� c
)(1
(
h
(
u∗� c
)
> 0
)∣∣∂−

u θ0
(
u∗� c
)∣∣ + 1

(
h
(
u∗� c
)
< 0
)∣∣∂+

u θ0
(
u∗� c
)∣∣
)

+ o(1)�

This expression coincides with the Hadamard derivative under continuous differentia-
bility at u= u∗, since that implies ∂−

u θ0(u
∗� c)= ∂+

u θ0(u
∗� c). It follows from the remain-

der of the proof in Chernozhukov, Fernández-Val, and Galichon (2010) that

sup
c∈C

∣∣∣∣
[
φ
(1)
3 (θ0 + tnhn)

]
(c)− [φ(1)3 (θ0)

]
(c)

tn
− [φ(1)′3�θ0

(h)
]
(c)

∣∣∣∣= o(1)�
where ‖ · ‖e is the Euclidean norm, and whereφ(1)′3�θ0

is defined in equation (30). Note that

φ(1)′3�θ0
is continuous in h, and therefore it is a Hadamard directional derivative.

That completes our analysis of the first component of the Hadamard directional
derivative of φ3 with respect to θ at θ0. By similar arguments, the second component
is

[
φ
(2)′
3�θ0

(h)
]
(c)= −

K(2)(c)∑
k=1

h
(
u
(2)
k (c)� c

)(1
(
h
(
u(2)k (c)� c

)
> 0
)∣∣∂−

u θ
(2)
0

(
u
(2)
k (c)� c

)∣∣ + 1
(
h
(
u(2)k (c)� c

)
< 0
)∣∣∂+

u θ
(2)
0

(
u
(2)
k (c)� c

)∣∣
)
� (31)

Proof of Lemma 3. Let

θ0(τ�w� c)=
(
Qc
Y1|W (τ |w)−QcY0|W (τ |w)

Q
c
Y1|W (τ |w)−Qc

Y0|W (τ |w)

)
�

θ̂(τ�w� c)=
⎛⎝Q̂cY1|W (τ |w)− Q̂cY0|W (τ |w)
Q̂
c

Y1|W (τ |w)− Q̂c
Y0|W (τ |w)

⎞⎠ �
Therefore (

P(c |w)
P(c |w)

)
= [φ3(θ0)

]
(w� c) and

(
P̂(c |w)
P̂(c |w)

)
= [φ3(θ̂)

]
(w� c)�

By Lemma 2,

√
N

⎛⎝Q̂cY1|W (τ |w)− Q̂cY0|W (τ |w)− (Qc
Y1|W (τ |w)−QcY0|W (τ |w))

Q̂
c

Y1|W (τ |w)− Q̂c
Y0|W (τ |w)− (QcY1|W (τ |w)−Qc

Y0|W (τ |w))
⎞⎠

�
(

Z(2)3 (τ�1�w� c)− Z(1)3 (τ�0�w� c)
Z(1)3 (τ�1�w� c)− Z(2)3 (τ�0�w� c)

)
�
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a mean-zero Gaussian processes in �∞((0�1)× supp(W )×C�R2)with continuous paths.
By Lemma C3 with u∗ = 1/2, the mapping φ3 is Hadamard directionally differen-

tiable tangentially to C ((0�1) × supp(W ) × C�R2). By the functional delta method for
Hadamard directionally differentiable functions (e.g., Theorem 2.1 in Fang and Santos
(2019)), we obtain

√
N

(
P̂(c |w)− P(c |w)
P̂(c |w)− P(c |w)

)

�

⎛⎜⎝
[
φ(2)′

3�Q(·)Y1|W (·|·)−Q
(·)
Y0|W (·|·)

(
Z(2)3 (·�1� ·� ·)− Z(1)3 (·�0� ·� ·))](w� c)[

φ(1)′
3�Q

(·)
Y1|W (·|·)−Q(·)Y0|W (·|·)

(
Z(1)3 (·�1� ·� ·)− Z(2)3 (·�0� ·� ·))](w� c)

⎞⎟⎠
≡ Z4(w� c)�

a tight random element of �∞(supp(W )× C�R2).

The following lemma shows that the sup operator is Hadamard directionally differ-
entiable. It is a very minor extension of Lemma B.1 in Fang and Santos (2015), where we
take the supremum over just one of two arguments.

Lemma C4. Let A and C be compact subsets of R. Define the map φ : �∞(A× C)→ �∞(C)
by [

φ(θ)
]
(c)= sup

a∈A
θ(a� c)�

Let

ΨA(θ� c)= arg max
a∈A

θ(a� c)

be a set-valued function. Then φ is Hadamard directionally differentiable tangentially to
C (A× C) at any θ ∈ C (A× C), and φ′

θ : C (A× C)→ C (C) is given by[
φ′
θ(h)
]
(c)= sup

a∈ΨA(θ�c)
h(a� c)

for any h ∈ C (A× C).

Proof of Lemma C4. This proof follows that of Lemma B.1 in Fang and Santos (2015).
Let tn ↘ 0, and hn ∈ �∞(A× C) such that

sup
(a�c)∈A×C

∣∣hn(a� c)− h(a� c)∣∣≡ ‖hn − h‖∞ = o(1)

for h ∈ C (A × C). Since A is a closed and bounded subset of R, their lemma shows that
tangential Hadamard directional differentiability holds for any fixed c ∈ C. We show that
this holds uniformly in c ∈ C as well. First, by their equation (B.1), we note that for some
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tn ↘ 0,

sup
c∈C

∣∣∣sup
a∈A

(
θ(a� c)+ tnhn(a� c)

)− sup
a∈A

(
θ(a� c)+ tnh(a� c)

)∣∣∣≤ sup
c∈C

tn sup
a∈A

∣∣hn(a� c)− h(a� c)∣∣
= tn‖hn − h‖∞

= o(tn)� (32)

Second, by their equations leading to (B.3)

sup
c∈C

∣∣∣sup
a∈A

(
θ(a� c)+ tnh(a� c)

)− sup
a∈ΨA(θ�c)

(
θ(a� c)+ tnh(a� c)

)∣∣∣
≤ tn sup

c∈C
sup

a0�a1∈A:|a0−a1|≤δn

∣∣h(a0� c)− h(a1� c)
∣∣

= o(tn) (33)

by uniform continuity of h(a� c) in a and c, which follows from the continuity of h on its
compact support A× C. Finally, combining equations (32) and (33) as in equation (B.4)
from Fang and Santos (2019), it follows that

sup
c∈C

∣∣∣sup
a∈A

(
θ(a� c)+ tnhn(a� c)

)− sup
a∈A

θ(a� c)− tn sup
a∈ΨA(θ�c)

h(a� c)
∣∣∣

≤ sup
c∈C

∣∣∣ sup
a∈ΨA(θ�c)

(
θ(a� c)+ tnh(a� c)

)− sup
a∈ΨA(θ�c)

θ(a� c)− tn sup
a∈ΨA(θ�c)

h(a� c)
∣∣∣+ o(tn)

= 0 + o(tn)�

which completes the proof.

Proof of Lemma 4. We begin by showing that the first component in equation (29)
converges to a tight random element of �∞(C × [0�1]). Fix c and w and define

φ4 : �∞(R)→R

by

φ4(θ)= max
{

sup
a∈Yz(w)

θ(a�w� c)�0
}
�

As in the proof of Lemma 1, the four mappings (δ1� δ2� δ3� δ4) when considered from
�∞(R × {0�1} × supp(W )) × �∞({0�1} × supp(W )) × �∞(supp(W )) to �∞(R × {0�1} ×
supp(W )) are all Hadamard differentiable when evaluated at θ0.

We can write

φ4(θ0) = max
{

sup
a∈Yz(w)

(
FcY1|W (a |w)− FcY0|W (a− z |w))�0

}
= max

{
sup

a∈Yz(w)

(
max
{[
δ1(θ0)

]
(a�1�w)�

[
δ2(θ0)

]
(a�1�w)

}
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− min
{[
δ3(θ0)

]
(a− z�0�w)�

[
δ4(θ0)

]
(a− z�0�w)

})
�0
}

= max
{

sup
a∈Yz(w)

([
δ1(θ0)

]
(a�1�w)− [δ3(θ0)

]
(a− z�0�w)

)
�

sup
a∈Yz(w)

([
δ1(θ0)

]
(a�1�w)− [δ4(θ0)

]
(a− z�0�w)

)
�

sup
a∈Yz(w)

([
δ2(θ0)

]
(a�1�w)− [δ3(θ0)

]
(a− z�0�w)

)
�

sup
a∈Yz(w)

([
δ2(θ0)

]
(a�1�w)− [δ4(θ0)

]
(a− z�0�w)

)
� 0
}
�

By linearity (δj − δk)(θ) is Hadamard differentiable at θ0 for j = 1�2 and k= 3�4. By
the chain rule (Lemma C2) and Lemma C4, the mappings

θ �→ sup
a∈Yz(w)

([
δj(θ)

]
(a�1�w)− [δk(θ)](a− z�0�w)

)
are Hadamard directionally differentiable at θ0 for j = 1�2 and k= 3�4. Finally, the max-
imum operator over five arguments is Hadamard directionally differentiable, and by an-
other application of the chain rule, φ4 is Hadamard directionally differentiable for fixed
c and w. Uniformity over c ∈ C and w ∈ supp(W ) is obtained from considering the vector
of Hadamard directional derivatives for all c ∈ C and w ∈ supp(W ).

By Lemma 3, the mapping (FY |X�W (· | ·� ·)�p(·|·)� q(·)) �→ P(· | ·) is Hadamard direc-
tionally differentiable. Linearity of the Hadamard directional derivative operator yields
that the mapping (FY |X�W (· | ·� ·)�p(·|·)� q(·)) �→ CDTE(z� ·� · | ·) is Hadamard directionally
differentiable.

Since

inf
a∈A

θ(a� c�w)= − sup
a∈A

(−θ(a� c�w))�
the infimum operator is Hadamard directionally differentiable. As in the proof of
Lemma 1, the minimum operator is Hadamard directionally differentiable. Follow-
ing Lemma 3, the mapping (FY |X�W (· | ·� ·)�p(·|·)� q(·)) �→ P(· | ·) is Hadamard direc-
tionally differentiable. A similar argument as above implies the mapping (FY |X�W (· |
·� ·)�p(·|·)� q(·)) �→ CDTE(z� ·� · | ·) is Hadamard directionally differentiable.

Combining these results with Lemma C1 allows us to conclude that

√
N

(
̂CDTE(z� c� t |w)− CDTE(z� c� t |w)
ĈDTE(z� c� t |w)− CDTE(z� c� t |w)

)
� Z̃5(c� t�w)�

a tight random element of �∞(C × [0�1] × supp(W )�R2) with continuous paths.
Finally, to see that equation (29) holds, consider the lower bound estimator. We have

√
N
(
D̂TE(z� c� t)− DTE(z� c� t)

)
=

K∑
k=1

√
N
(
ĈDTE(z� c� t |wk)− CDTE(z� c� t |wk)

)
qwk
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+
K∑
k=1

CDTE(z� c� t |wk)
√
N(q̂wk − qwk)

�
K∑
k=1

Z̃5(c� t�wk)qwk +
K∑
k=1

CDTE(z� c� t |wk)Z(3)1 (0�0�wk)�

A similar derivation holds for the upper bound estimator.

Proof of Theorem 2. By Lemmas 3 and C1, the numerator of equation (22) converges
uniformly over c ∈ C. By Lemmas 3 and 4, the denominator also converges uniformly
over c ∈ C. By the delta method,

√
N
(
b̂f(c�p)− bf(c�p)

)

= √
N

( 1 −p−
K∑
k=1

P̂(c |wk)q̂wk

1 +
K∑
k=1

[
min
{

inf
y∈Y0(wk)

(
F̂
c

Y1|W (y |wk)− F̂cY0|W (y |wk)
)
�0
}

− P̂(c |wk)
]
q̂wk

−
1 −p−

K∑
k=1

P(c |wk)qwk

1 +
K∑
k=1

[
min
{

inf
y∈Y0(wk)

(
F
c
Y1|W (y |wk)− FcY0|W (y |wk)

)
�0
}

− P(c |wk)
]
qwk

)

�
−

K∑
k=1

Z(1)4 (wk� c)qwk −
K∑
k=1

P(c |wk)Z(3)1 (0�0�wk)

1 +
K∑
k=1

[
min
{

inf
y∈Y0(wk)

(
F
c
Y1|W (y |wk)− FcY0|W (y |wk)

)
�0
}

− P(c |wk)
]
qwk

−
1 −p−

K∑
k=1

P(c |wk)qwk(
1 +

K∑
k=1

[
min
{

inf
y∈Y0(wk)

(
F
c
Y1|W (y |wk)− FcY0|W (y |wk)

)
�0
}

− P(c |wk)
]
qwk

)2 Z̃(c)�

where

√
N

(
1 −p−

K∑
k=1

P̂(c |wk)q̂wk −
[

1 −p−
K∑
k=1

P(c |wk)qwk
])

� −
K∑
k=1

Z(1)4 (wk� c)qwk −
K∑
k=1

P(c |wk)Z(3)1 (0�0�wk)
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and

√
N

(
K∑
k=1

[
min
{

inf
y∈Y0(wk)

(
F̂
c

Y1|W (y |wk)− F̂cY0|W (y |wk)
)
�0
}

− P̂(c |wk)
]
q̂wk

−
K∑
k=1

[
min
{

inf
y∈Y0(wk)

(
F
c
Y1|W (y |wk)− FcY0|W (y |wk)

)
�0
}

− P(c |wk)
]
qwk

)
� Z̃(c)�

Here Z̃(c) is a random element of �∞(C) by Lemmas 3 and 4. Therefore,

√
N
(
b̂f(c�p)− bf(c�p)

)
converges to a random element in �∞(C ×P).

As discussed in the proof of Lemma 1, the maximum and minimum operators
in equation (21) are Hadamard directionally differentiable. By Lemma C2, their com-
position is Hadamard directionally differentiable. Therefore, by the delta method for
Hadamard directionally differentiable functions,

√
N(B̂F(c�p)− BF(c�p)) converges in

process as in the statement of the theorem.

Lemma C5. Let h :A→R whereA⊆ R. Let F(h)= supx∈Ah(x). Let ‖ ·‖∞ denote the sup-
norm ‖h‖∞ = supx∈A |h(x)|. Then F is Lipschitz continuous with respect to the sup-norm
‖ · ‖∞ and has Lipschitz constant equal to one.

Proof of Lemma C5. For functions h and h′,

sup
x∈A

h(x)− sup
x̃∈A

h′(x̃)= sup
x∈A

(
h(x)− sup

x̃∈A
h′(x̃)

)
≤ sup
x∈A
(
h(x)− h′(x)

)
≤ sup
x∈A

∣∣h(x)− h′(x)
∣∣�

By a symmetric argument,

sup
x∈A

h′(x)− sup
x̃∈A

h(x̃)≤ sup
x∈A

∣∣h′(x)− h(x)∣∣
= sup
x∈A

∣∣h(x)− h′(x)
∣∣�

Therefore |F(h)− F(h′)| ≤ ‖h− h′‖∞.

Proof of Proposition 2. Hadamard directional differentiability ofφ follows from the
chain rule (Lemma C2) and from the proof of Theorem 2, since the breakdown frontier is
a Hadamard directionally differentiable mapping of P(·) = E[P(· |W )] and DTE(z� ·� ·),
which are themselves Hadamard directionally differentiable mappings of θ0.

Lemma C1 combined with Theorem 3.6.1 of van der Vaart and Wellner (1996) im-
plies consistency of the nonparametric bootstrap for our underlying parameters: Z∗

N =



Quantitative Economics 11 (2020) Inference on breakdown frontiers 105

√
N(θ̂∗ − θ̂) P� Z1. By this result, εN → 0,

√
NεN → ∞, and Theorem 3.1 in Hong and Li

(2018), equation (25) holds.
By 1/σ(c) being uniformly bounded, we have that[

φ̂′
θ0

(√
N(θ̂∗ − θ̂))](c�p)
σ(c)

P�
Zbf(c�p)

σ(c)
�

By Lemma C5, the sup operator is Lipschitz with Lipschitz constant equal to 1. Therefore,
by Proposition 10.7 on page 189 of Kosorok (2008), we can apply a continuous mapping
theorem to get

sup
c∈C

[
φ̂′
θ0

(√
N(θ̂∗ − θ̂))](c�p)
σ(c)

P� sup
c∈C

Zbf(c�p)

σ(c)
�

The rest of the proof follows from Corollary 3.2 of Fang and Santos (2015).

Lemma C6. LetC > 0. Let C = {c1� � � � � cJ} ⊆ [0�C] be a finite grid of points. Let f : [0�C] →
R+ be a nonincreasing function. Let L̂B(·) be an asymptotically exact uniform lower 1 −α
confidence band for f on the grid points:

lim
N→∞

P
(
L̂B(cj)≤ f (cj) for j = 1� � � � � J

)= 1 − α�

Define L̃B : [0�C] →R+ by

L̃B(c)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂B(c1) if c ∈ [0� c1]�
���

L̂B(cj) if c ∈ (cj−1� cj], for j = 2� � � � � J�
���

0 if c ∈ (cJ�C]�

Then L̃B(·) is an asymptotically exact uniform lower 1 − α confidence band on [0�C]:
lim
N→∞

P
(
L̃B(c)≤ f (c) for all c ∈ [0�C])= 1 − α�

Proof of Lemma C6. Define the events

A= {L̂B(cj)≤ f (c) for all c ∈ (cj−1� cj], for j = 1� � � � � J
}

and

B= {L̂B(cj)≤ f (cj) for j = 1� � � � � J
}
�

A immediately implies B. Since f is nonincreasing, B impliesA. Thus

P
(
L̃B(c)≤ f (c) for all c ∈ [0�C])= P

(
L̂B(cj)≤ f (c) for all c ∈ (cj−1� cj]� for j = 1� � � � � J

)
= P
(
L̂B(cj)≤ f (cj) for j = 1� � � � � J

)
�
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The first line follows by definition of L̃B and since f is nonnegative. Taking limits as
N → ∞ gives

lim
N→∞

P
(
L̃B(c)≤ f (c) for all c ∈ [0�C])= lim

N→∞
P
(
L̂B(cj)≤ f (cj) for j = 1� � � � � J

)
= 1 − α�

where the last equality follows from the validity of the band L̂B(·) on C.

Proof of Corollary 1. This follows immediately from Proposition 2 and Lemma C6.
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