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Appendix B

B.1 Additional proofs

Proof of Lemma 3. For the if part, suppose �0(·�x� z1� z2) is piecewise weakly mono-
tone on SY0x|X=x. Then, by definition, SY0x|X=x can be partitioned into a sequence of
non-overlapping intervals {Ij : j = 1� � � � � J}, where J ∈N∪{+∞}, such that �0(·�x� z1� z2)

is weakly monotone on every interval. By assumption, φx(·) is continuous and strictly
increasing on SY0x|X=x. Then SY1x|X=x can be partitioned into a sequence of non-
overlapping intervals {φx(Ij) : j = 1� � � � � J}. Moreover, by (9), we have

�1(y�x� z1� z2)= �0
(
φ−1
x (y)�x� z1� z2

)
� ∀y ∈ SY1x|X=x�

Clearly, �1(·�x� z1� z2) is weakly monotone in every interval φx(Ij). The only if part can
be shown similarly. The proof for the strict part is similar. �

Proof of Lemma 4. We first show the if part. W.l.o.g., let �0(·�x� z1� z2) be piecewise
strictly monotone on SY0x|X=x. Thus SY0x|X=x can be partitioned into a sequence of
non-overlapping intervals {Ij : j = 1� � � � � J} such that �0(·�x� z1� z2) is strictly monotone
on each Ij . Moreover, we can merge successive intervals such that if �0(·�x� z1� z2) is
strictly increasing (decreasing) on Ij , then it is strictly decreasing (increasing) on Ij+1.
By the proof of Lemma 3, SY1x|X=x can be partitioned into the same number of non-
overlapping intervals {I ′j ≡ φx(Ij) : j = 1� � � � � J}, such that �1(·�x� z1� z2) is strictly in-
creasing (decreasing) on each interval I ′j whenever �0(·�x� z1� z2) is strictly increasing
(decreasing) on Ij .
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Because the intervals {Ij; j = 1� � � � � J} and {I ′j; j = 1� � � � � J} partition SY0x|X=x and
SY1x|X=x, respectively, with increasing left endpoints, we can pair them into {(Ij� I ′j); j =
1� � � � � J}. Thus, for every y ∈ Ij , we solve φx(y) by (9) as

φx(y)= �−1
1j

(
�0j(y�x� z1� z2)�x� z1� z2

)
�

where �0j(·�x� z1� z2) and �1j(·�x� z1� z2) are the restrictions of �0(·�x� z1� z2) and �1(·�x�
z1� z2) to Ij and I ′j , respectively. Thus,φx is identified on each Ij and hence on SY0x|X=x =⋃J
j=1 Ij .

For the only if part, w.l.o.g., suppose �0(·�x� z1� z2) is constant on a nondegenerate
interval I ⊆ SY0x|X=x. By the proof of Lemma 3, �1(·�x� z1� z2) is also constant on φx(I).
It suffices to construct a continuous and strictly increasing function φ̃x 	= φx such that
(9) holds for φ̃x. Let φ̃x(y)=φx(y) for all y /∈ I and φ̃x(y)=φx(g(y)) for all y ∈ I, where
g is an arbitrary continuous, strictly increasing mapping from I onto I. Clearly, there
are plenty of choices for such a function g. Moreover, φ̃x 	= φx if g(t) is not an identity
mapping. By construction, �1(φ̃x(y)�x� z1� z2) = �1(φx(y)�x� z1� z2) holds for all y ∈ I
because �1(·�x� z1� z2) is constant on φx(I). This equation also holds for all y /∈ I by the
definition of φ̃x. Then (9) holds for φ̃x. �

B.2 Proof of the statement in footnote 14

Given x ∈ SX . The Chernozhukov and Hansen (2005) condition is that the Jacobian ma-
trix

Π′(y0� y1)≡
(
f (y0�D= 0|X = x�Z = z1) f (y1�D= 1|X = x�Z = z1)

f (y0�D= 0|X = x�Z = z2) f (y1�D= 1|X = x�Z = z2)

)

is continuous and full-rank in (y0� y1) ∈ L. In particular, �d(·�x� z1� z2) is continuously
differentiable in yd ∈ SYdx|X=x for d = 0�1.

We first show by contradiction that ∂�0(·�x� z1� z2)/∂y0 	= 0 and ∂�1(φx(·)�x� z1�

z2)/∂y1 	= 0 on SY0x|X=x. Suppose not. Then there exists y∗
0 ∈ SY0x|X=x such that ∂�0(y

∗
0 �x�

z1� z2)/∂y0 = 0 and ∂�1(φx(y
∗
0 )�x� z1� z2)/∂y1 = 0 for some y∗

0 ∈ SY0x|X=x. Because ∂�d(·�
x� z1� z2)/∂yd = (−1)d[f (·�D = d|X = x�Z = z1) − f (·�D = d|X = x�Z = z2)], it follows
thatΠ′(y∗

0 � y
∗
1 ) is not full rank, where y∗

1 ≡φx(y∗
0 ) ∈ SY1x|X=x.

Because SY1x|X=x = φx(SY0x|X=x), we have ∂�d(·�x� z1� z2)/∂yd 	= 0 on SYdx|X=x for
d = 0�1. Because of continuity, ∂�d(·�x� z1� z2)/∂yd > 0 or < 0 on the projection of the
rectangular L, that is, �d(·�x� z1� z2) is strictly monotone on the interval projection of L
onto SYdx|X=x for d = 0�1. �

B.3 Partial identification when Assumption D fails

In Section 2, Assumption D is a support condition that relates to the effectiveness of the
instrumental variable. Lemma 1 highlights that, in addition to being a valid instrument,
the instrumental variable also needs to be fully effective to extend point identification of
the counterfactual mapping from the complier group to the whole population.19 Other-

19Parameterization ofφx or assuming additive separability of ε in h can also achieve point identification
of φx on the full support of Y0x givenX = x. See also Angrist and Fernandez-Val (2013).
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wise, there exists a nontrivial subgroup in the population for which exogenous variations
of instrumental variables are not, in general, sufficient to point identify their treatment
effects. When Assumption D fails, we call the instrumental variable Z partially effective.
In this case, the counterfactual mapping on the support of the complier group provides
bounds for the ITE and the structural function.

For a generic random variable W , let Q∗
W (τ) = sup{w : P(W ≤ w) ≤ τ} for any τ ∈

[0�1]. Because {w : P(W ≤ w) ≤ τ}⋃{w : P(W ≤ w) ≥ τ} = R, we have QW (τ) ≤ Q∗
W (τ)

with equality ifQW (τ) is an inner point in the support ofW . Moreover, we haveQ∗
W (1)=

+∞ andQW (0)= −∞.

Corollary 1. Suppose that Assumptions A to C hold. For every x ∈ SX , let z1� z2 ∈ SZ|X=x
be such that p(x�z1) < p(x�z2). Then the counterfactual mappingφx(·) is partially iden-
tified by

φx�
(y)≡QY1x|Cx
(
FY0x|Cx(y)

) ≤φx(y)≤Q∗
Y1x|Cx

(
FY0x|Cx(y)

) ≡φx�u(y) (11)

for all y ∈ SY |D=0�X=x. This partially identifies the ITE by (4).20 In addition, suppose that
Assumption E holds. Then the structural function h(d�x�τ) is partially identified by

h
(d�x�τ)≤ h(d�x�τ)≤ hu(d�x�τ)�
where hs(1�x� τ) is the τth quantile of the distribution P[YD+φx�s(Y)(1−D)≤ t|X = x];
hs(0�x� τ) is the τth quantile of the distribution P[ϕx�s(Y)D+ Y(1 −D) ≤ t|X = x] with
ϕx�s(·) defined in footnote 20 for s = 
�u.

Corollary 1 establishes interval identification for the ITE and the structural function
h as well. Note that the upper and lower bounds of φx(y) collapse to each other when
y ∈ S◦

Y0x|Cx , the interior of SY0x|Cx . That is, φx(·) is point identified on S◦
Ydx|Cx . A similar

property applies to the structural function h(d�x�τ)when τ ∈ S◦
ε|Cx . Our bounds are con-

structive, but not necessarily sharp because of the exogeneity in Assumption E, which
imposes restrictions beyond monotonicity

Proof of Corollary 1. By the proof of Lemma 1, we have

FY0x|Cx
(
h(0�x� τ)

) = FY1x|Cx
(
h(1�x� τ)

)
for any τ ∈ S◦

ε|Cx . Since FY1x|Cx is continuous and weakly increasing at h(1�x� τ), we have

QY1x|Cx
(
FY0x|Cx

(
h(0�x� τ)

)) ≤ h(1�x� τ)≤Q∗
Y1x|Cx

(
FY0x|Cx

(
h(0�x� τ)

))
�

Let y = h(0�x� τ) ∈ S◦
Y0x|Cx . Then h(1�x� τ)=φx(y) and the above equation becomes

φx�
(y)≤φx(y)≤φx�u(y)�
20Note that (11) implies that for all y ∈ SY |D=1�X=x,

ϕx�
(y)≡QY0x|Cx
(
FY1x|Cx (y)

) ≤φ−1
x (y)≤Q∗

Y0x|Cx
(
FY1x|Cx (y)

) ≡ ϕx�u(y)�
It can be shown that ϕx�
(y)= inf{y0 :φx�u(y0)≥ y} and ϕx�u(y)= sup{y0 :φx�
(y0)≤ y}.
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which gives the desired result by continuous extension to SY0x|Cx = SY |D=0�X=x. By a sim-
ilar argument, we obtain the result in footnote 20.

Moreover, by (6), P[YD+φx�
(Y)(1 −D) ≤ ·|X = x] and P[YD+φx�u(Y)(1 −D) ≤
·|X = x] are the upper and lower bounds of P(h(1�x�ε) ≤ ·|X = x), respectively. There-
fore, their τth quantiles serve as the lower and upper bounds of h(1�x� τ), respectively.
A similar argument holds for h(0�x� τ). �

B.4 Partial identification when Assumptions C′(ii) and D′ fail

Motivated by Shaikh and Vytlacil (2011), Assumption C′(ii) can be relaxed, leading to
partial identification. For generic random variables W and S, let KW |S be the Kol-
mogorov (conditional) c.d.f. defined by KW |S(w|s) = P(W < w|S = s). By definition, we
haveKW |S(w|s)≤ FW |S(w|s) with equality if w is not a mass point ofW given S = s.

Corollary 2. Suppose that Assumptions A′, B, D′, and E′ hold. Fix x ∈ SX . Suppose also
that Assumption C′(i) holds with x̃. Then φx�x̃(·) is partially identified by

φ
x�x̃
(·)≡QY1x|m(x�z1)<η≤m(x�z2)

(
KY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(·)

) ≤φx�x̃(·)
≤QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(·)

) ≡φx�x̃(·)� ∀y ∈ SY |D=0�X=x̃�

Moreover, for any τ ∈ (0�1), the lower and upper bounds of h(1�x� τ) are identified as
the τth quantile of the distributions P(Y ≤ ·;D = 1|X = x�Z = z) + P[φ

x�x̃
(Y) ≤ ·;D =

0|X = x̃�Z = z̃] and P(Y ≤ ·;D = 1|X = x�Z = z)+ P[φx�x̃(Y) ≤ ·;D = 0|X = x̃�Z = z̃],
respectively, where z ∈ SZ|X=x and z̃ ∈ SZ|X=x̃ satisfy p(x�z)= p(x̃� z̃). 21

In Corollary 2, the lower and upper bounds collapse to each other if, in addition,
Assumption C′(ii) holds for x̃.

Similarly to Corollary 1, we can also drop the support condition D′ to construct
bounds under Assumption C′(i).

Corollary 3. Suppose that Assumptions A′, B, and E′ hold. Fix x ∈ SX . Suppose also
that Assumption C′(i) holds with x̃. Then φx�x̃(·) is partially identified by

φLx�x̃(·)≡QY1x|m(x�z1)<η≤m(x�z2)

(
KY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(·)

) ≤φx�x̃(·)
≤Q∗

Y1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(·)

) ≡φHx�x̃(·)� ∀y ∈ SY |D=0�X=x̃�

Moreover, for any τ ∈ (0�1), the lower and upper bounds of h(1�x� τ) are identified as
the τth quantiles of the distributions P(Y ≤ ·;D = 1|X = x�Z = z)+ P[φLx�x̃(Y) ≤ ·;D =
0|X = x̃�Z = z̃] and P(Y ≤ ·;D = 1|X = x�Z = z)+ P[φHx�x̃(Y) ≤ ·;D = 0|X = x̃�Z = z̃],
respectively, where z ∈ SZ|X=x and z̃ ∈ SZ|X=x̃ satisfy p(x�z)= p(x̃� z̃).

21This corollary was first presented at the Bilkent Workshop in Econometric Theory and Applications,
2013.



Supplementary Material Nonseparable models with binary endogeneity 5

When there are multiple x̃ satisfying Assumption C′(i), we can use them jointly to
tighten our bounds in Corollaries 2 and 3 by taking the sup and the inf over such x̃ fol-
lowing Shaikh and Vytlacil (2011). For the same reason as in Appendix B.3, our bounds
are constructive, but not necessarily sharp because of Assumption E′.

Proof of Corollary 2. Fix x� x̃ ∈ SX satisfying Assumption C′(i). Let further z1� z2 ∈
SZ|X=x and z̃1� z̃2 ∈ SZ|X=x̃ such that p(x�z1) = p(x̃� z̃1) < p(x�z2) = p(x̃� z̃2). By the
proof of Corollary 1, we have

QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
h(0� x̃� τ)

)) = h(
1�x�ψ(0� x̃� τ)

) ≥ h(1�x� τ)�
where the last inequality comes from the fact that ψ(0� x̃� τ)≥ τ. Therefore,

QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(y)

) ≥ h(
1�x�h−1(0� x̃� y)

)
=φx�x̃(y)� y ∈ SY0x̃ �

For the lower bound, let ϕ(0� x̃� τ)= inf{e : h(0� x̃� e)= h(0� x̃� τ)}. By Assumption A′, we
have

KY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
h(0� x̃� τ)

) = Fε|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
ϕ(0� x̃� τ)

)
�

Therefore,

QY1x|m(x�z1)<η≤m(x�z2)

(
KY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
h(0� x̃� τ)

)) = h(
1�x�ϕ(0� x̃� τ)

) ≤ h(1�x� τ)�
which provides a lower bound for h(1�x�h−1(0� x̃� ·)).

Given the interval identification of φx�x̃(·), the bounds of h(1�x� ·) follow a similar
argument as in the proof in Corollary 1. �

The proof of Corollary 3 simply follows the arguments in Corollaries 1 and 2.

B.5 Characterization of model restrictions

In empirical applications, an important question is whether to adopt a model with or
without the selection equation (2). The selection equation provides a simple and con-
structive identification result, but introduces additional restrictions on the data. We now
characterize all such restrictions. These are useful for developing model selection and
model specification tests.

Formally, we denote these two models by

M0 ≡ {[h�FεD|XZ] : Assumption A holds
}
�

M1 ≡ {[h�m�Fεη|XZ] : Assumptions A and B hold
}
�

To simplify, hereafter we assume SXZ = SX × {z1� z2} as well as p(x�z1) < p(x�z2) for
all x ∈ SX ; see Assumption C. On the other hand, we do not impose Assumptions D
to F, which identify these two models. We say that a conditional distribution FYD|XZ of
observables is rationalized by model M if and only if there exists a structure in M that
generates FYD|XZ . The next lemma provides a necessary and sufficient condition for M0
to be rationalized by the data.
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Lemma 5. A conditional distribution FYD|XZ can be rationalized by M0 if and only if the
following statements hold:

(i) The function FY |DXZ(·|d�x� z) is a continuous conditional c.d.f.

(ii) For every x ∈ SX , there exists a continuous and strictly increasing mapping gx :
R → R such that gx maps S

(1−D)Y+Dg−1
x (Y)|X=x onto SDY+(1−D)gx(Y)|X=x; the support

S
(1−D)Y+Dg−1

x (Y)|X=x is a nondegenerate subset of R. Moreover, we have

�0(·�x� z1� z2)= �1
(
gx(·)�x� z1� z2

)
on S

(1−D)Y+Dg−1
x (Y)|X=x� (12)

In Lemma 5, the key restriction is the existence of a solution to (12), which may not
be unique.

We now turn to M1.

Theorem 5. A conditional distribution FYD|XZ rationalized by M0 can also be rational-
ized by M1 if and only if for any x ∈ SX , �d(·�x� z1� z2) for d ∈ {0�1} are continuous and
strictly increasing on So

(1−D)Y+Dg−1
x (Y)|X=x and SoDY+(1−D)gx(Y)|X=x, respectively.

Note that, by definition, �d(·�x� z1� z2) for d = 0�1 are flat elsewhere. Specifically,
from their definitions, they vanish below their supports and are equal to P(D = 1|X =
x�Z = z2)− P(D= 1|X = x�Z = z1) above their supports.

Proof of Lemma 5. For the only if part, note that Assumptions A(ii) and A(iii) imply
Fε|X�Z(·|x�z) is continuous. Moreover, because

Fε|X�Z(·|x�z)=
∑
d=0�1

Fε|DXZ(·|d�x� z)× P(D= d|X = x�Z = z)� (13)

where Fε|DXZ(·|d�x� z) are monotone functions and P(D = d|X = x�Z = z) are non-
negative, then Fε|DXZ(·|d�x� z) is also continuous. By Assumption A(i), condition (i)
holds. For (ii), let gx(·) = φx(·) on SY0x|X=x. Thus, conditional on X = x, we have
(1 − D)Y + Dg−1

x (Y) = h(0�x�ε) and DY + (1 − D)gx(Y) = h(1�x�ε). The desired re-
sult follows from Section 3.

For the if part, we construct a structure S = [h�FεD|XZ] that rationalizes the given
distribution FYD|XZ . Fix an arbitrary x. Let h(0�x� e)= e and h(1�x� e)= gx(e) for e ∈ R.
We define the distribution FεD|XZ by the conditional distribution of (g−1

X (Y) ·D + Y ·
(1 −D)�D) given X and Z. It is straightforward to see that the constructed structure S
satisfies Assumption A(i). Moreover, Assumption A(iii) is satisfied by integrating out z in
(13). We now verify Assumption A(ii), that is, Z⊥ε|X = x.

By (12), we have

P
[
Y ≤ gx(y);D= 1|X = x�Z = z1

] + P[Y ≤ y;D= 0|X = x�Z = z1]
= P

[
Y ≤ gx(y);D= 1|X = x�Z = z2

] + P[Y ≤ y;D= 0|X = x�Z = z2]
= P

[
Y ≤ gx(y);D= 1|X = x] + P[Y ≤ y;D= 0|X = x]�



Supplementary Material Nonseparable models with binary endogeneity 7

where the second equality is because Z is binary. Hence, for any τ ∈ [0�1] and z = z1� z2,

PS(ε≤ τ|X = x�Z = z)
= P(Y ≤ τ;D= 0|X = x�Z = z)+ P

(
Y ≤ gx(τ);D= 1|X = x�Z = z)�

which is invariant with z ∈ {z1� z2} by the previous equality. Therefore, Z⊥ε|X .
Now it suffices to show that the constructed structure S = [h�FεD|XZ] generates the

given distribution FYD|XZ . This is true because for any (y�d�x� z) ∈ SYDXZ , we have

PS(Y ≤ y;D= 0|X = x�Z = z)= PS(ε≤ y;D= 0|X = x�Z = z)
= P(Y ≤ y;D= 0|X = x�Z = z)�

The last step comes from the construction of FεD|XZ . Similarly,

PS(Y ≤ y;D= 1|X = x�Z = z)= PS

(
gx(ε)≤ y;D= 1|X = x�Z = z)

= P(Y ≤ y;D= 1|X = x�Z = z)� �

Proof of Theorem 5. For the only if part, let gx(·) = φx(·) on SY0x|X=x. Thus, condi-
tional on X = x, we have (1 − D)Y + Dg−1

x (Y) = h(0�x�ε) and DY + (1 − D)gx(Y) =
h(1�x�ε). Hence, So

(1−D)Y+Dg−1
x (Y)|X=x = SoY0x|X=x and SoDY+(1−D)gx(Y)|X=x = SoY1x|X=x.

From the proof of Lemma 1 it follows that �d(·�x� z1� z2) is continuous and strictly in-
creasing on SoYdx|X=x.

We now show the if part. Suppose the strict monotonicity of�d(·�x� z1� z2) holds for a
structure S0 = [h�FεD|XZ] satisfying Assumption A. Fix X = x. For notational simplicity,
we suppress x and hence the conditioning onX = x in the following analysis. It suffices
to construct an observationally equivalent structure S1 ∈ M1. First, let η ∼ U(0�1) and
m(z)= p(z) so that PS1(D= 1|X = x�Z = z)= p(x�z) when (2) holds. Next, let h(0� e)=
e and h(1� e)= g(e) for all e ∈ R. To construct S1, it suffices to define Fε|η: For any e ∈ R,
let

PS1(ε≤ e|η)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
Y ≤ h(1� e)�D= 1|Z = z1

)
m(z1)

� if η≤m(z1)�

�1
(
h(1� e)� z1� z2

)
m(z2)−m(z1)

� ifm(z1) < η≤m(z2)�

P
(
Y ≤ h(0� e)�D= 0|Z = z2

)
1 −m(z2)

� if η>m(z2)�

By construction and Lemma 5(i), PS1(ε ≤ e|η) is continuous and (weakly) increasing
in e ∈ R since h(d� ·), and �d(·� z1� z2) are continuous and strictly increasing functions.
Given η∼U[0�1], (ε�η) are jointly continuously distributed. Moreover, let Fεη|Z = Fεη.
Hence, Fεη is a proper conditional c.d.f. that satisfies Assumptions A(ii), A(iii), B(i), and
B(ii). Using the constructedm, h, and Fε�η, it is straightforward that S1 ∈ M1 is observa-
tionally equivalent to S0. �
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