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Abstract

We develop a test for deciding whether the linear spaces spanned by the factor ex-
posures of a large cross-section of assets towards latent systematic risk factors at two
distinct points in time are the same. The test uses a panel of asset returns in local win-
dows around the two time points. The asymptotic setup is of joint type: the number
of assets and the number of return observations per asset increase asymptotically while
the length of both time windows shrinks. We estimate the factor exposures, up to ro-
tation, over the two periods using classical principal component analysis and evaluate
their projection discrepancy, which is rotation invariant. This projection discrepancy
is then centered with one between factor exposures computed over a partition of the
pooled return data into odd and even increments. We derive the limit distribution of
the statistic under the null hypothesis and develop an easy-to-implement bootstrap for
constructing the critical region of the test. The test is applied to intraday financial
data to determine whether the linear span of assets’ systematic risk exposures differ
during a trading day or after a release of important economic information.

Keywords: asset pricing, high-frequency data, latent factor model, nonparametric
test, PCA, systematic risk.

JEL classification: C51, C52, G12.

1 Introduction

Measuring assets’ sensitivity towards systematic risk, or betas, plays a central role in asset

pricing, see e.g., part II of the book of Cochrane (2009). Early asset pricing models, such as

the classical CAPM of Sharpe (1964) and Lintner (1965a,b), are static and imply constant

assets’ exposure to systematic risk. However asset pricing models can hold only conditionally,
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see e.g., Hansen and Richard (1987), and a changing investment opportunity set, see e.g.,

Merton (1973), can induce time-varying systematic risk exposures of assets. Incorporating

this time variation is important for evaluation and testing of asset pricing models, see for

example Shanken (1990), Jagannathan and Wang (1996) and Ferson and Harvey (1999).

Existing work has either modeled time-varying betas explicitly using macro variables or firm

specific quantities, see e.g., Connor et al. (2012), Fan et al. (2016), Gagliardini et al. (2016)

and Kelly et al. (2019), among many others or has used a long window of low frequency

returns to estimate assets’ exposure to observable systematic risk factors following Fama

and MacBeth (1973).

Sampling at high frequency allows to improve the measurement of betas. Indeed, quadratic

covariation between two processes can be inferred from high-frequency observations of these

processes via the so-called realized quadratic covariation, see e.g., Barndorff-Nielsen and

Shephard (2004a) and also Mykland and Zhang (2006, 2009). If betas remain constant over

short time intervals, then they are simple and known transforms of the quadratic covariation

between the assets and the observable factors as well as the quadratic covariation between

the factors. Therefore, high-frequency data allows implementing the approach of Fama and

MacBeth (1973) but using much shorter time windows while at the same time maintaining

high level of precision in the beta estimation. The improved precision in measuring betas

can lead to nontrivial gains in asset pricing applications, see e.g., Bollerslev et al. (2016) and

Aıt-Sahalia et al. (2023), among others.

The key underlying assumption for utilizing the high-frequency data in the nonparametric

estimation of betas discussed above is that the latter remain constant over the estimation

window. The goal of this paper is to design a nonparametric test that allows us to decide

if this is the case without taking a stand on what the systematic risk factors are. More

specifically, we design a test for difference in the linear span of assets’ exposure to latent

systematic risk factors at two distinct points in time. If the assumption for constant assets’

exposures to systematic risk factors (our null hypothesis) is violated, then one needs to take

into account this time-variation via parametric or nonparametric methods.

Given the fact that variables that have been used to model variation in betas in prior

work typically do not change over very short time intervals, one would expect that betas

remain constant over days. However, Andersen et al. (2021) find that market betas exhibit

pronounced intraday pattern, with monotonically declining cross-sectional beta dispersion

during the trading day.1 The result in Andersen et al. (2021) is for the case when the only

observable systematic risk factor is the market portfolio.2

1This pattern is distinct from the well-known U-shape intraday pattern of assets’ volatility, see e.g.,
Andersen et al. (2023) and references therein.

2Andersen et al. (2023) extend this analysis by including the Fama-French factors and show that the
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There are two major drawbacks, however, of using observable factors that our analysis

can overcome. First, omitted factors that are correlated with observable ones can yield

time-variation in estimated assets’ factor exposures to the observable factors even when the

true exposures (the object of economic interest) remain unchanged.3 The reason for this is

time variation in the standard omitted variable bias in the beta estimation over different

parts of the trading day. This is a serious limitation of using only observable factors in the

analysis given the many candidate asset pricing factors proposed in the finance literature

(also referred to as factor zoo), see e.g., Cochrane (2011), Harvey et al. (2016) and Feng

et al. (2020). Second, if the observable factors are merely noisy proxies of the true ones, this

can also generate time variation in the exposure to observable factors when there is none

towards the true latent factors. This can happen because the errors-in-variables bias induced

by the measurement error in the observable factors can change over time due to time varying

volatility in the latter.4

For these reasons, in this paper, we develop a general nonparametric test for deciding

whether the linear span of assets’ exposures to systematic risk at two distinct points in time

remains unchanged without assuming knowledge of the systematic risk factors. Our test can

discriminate against two types of scenarios. One is a situation in which the number of factors

at the two points in time are the same but nevertheless the linear spaces spanned by the

factor loadings at the two time points differ. Another scenario that our test can discriminate

against is one in which the number of “active” systematic factors at the two points in time

differ, even though the factor loadings for the common factors present in the two periods

are the same. This can be the case, for example, if some of the systematic risk factors are

present only at one of the two time points but remain dormant at the other one.5

In our asymptotic setup the number of assets increases and so does the sampling frequency

while the length of the two time periods shrinks to zero. Assets are exposed to a fixed number

of latent factors and even though exposures can change, they remain constant in arbitrarily

intraday market beta pattern gets attenuated somewhat when accounting for these additional risk factors in
the beta estimation. On a theoretical level, Andersen et al. (2021) and Andersen et al. (2023) focus only on
changes in the cross-sectional distribution of betas while here we are interested in changing factor exposures
for each of the assets in the sample. As a result, the rate of convergence of our statistics is faster and depends
on the cross-sectional dimension of the return panel, which is not the case for the test statistics of Andersen
et al. (2021) and Andersen et al. (2023).

3Such omitted factors can also impact significantly inference about risk premia of observable factors as
shown recently by Giglio and Xiu (2021).

4For example, the feasible decomposition of market returns into cash flow shocks and discount-rate shocks
(both of which are latent), proposed by Campbell and Vuolteenaho (2004), involves estimation of a model
of expected returns. Similarly, issues with the correct measurement of the value factor have been recently
discussed by Eisfeldt et al. (2022).

5For example, a release of important economic information, e.g., during an FOMC announcement, might
lead to certain systematic shocks being active only during that period.

3



small local neighbourhoods of the two time points. We follow Connor and Korajczyk (1986);

Bai and Ng (2002), Stock and Watson (2002) and Bai (2003), and use standard principal

component analysis (PCA) to recover the factor exposures, up to a rotation, towards the

active factors.6 Our test statistic is then formed on the basis of the Frobenius norm of

the projection discrepancy between the estimated latent factor exposures over the two time

periods. This statistic is invariant to rotation of the factor loadings and its limit should be

zero under the null hypothesis that the linear span of the assets’ systematic risk exposures

does not differ across the two points in time that are being compared.

A methodological innovation of the current paper is the development of a new debiasing

method. To remove higher-order biases, we introduce a bias-mimicking statistic, which is

defined as the projection discrepancy between factor loadings estimated from the odd and

even increments, respectively, of the pooled over the two periods return data. Our test

statistic is then centered by the bias-mimicking one. The latter mimics the higher-order

biases of the original test statistic, and is asymptotically zero both under the null and the

alternative hypotheses. Unlike the usual analytical debiasing or the Jackknife, our new bias-

mimicking statistic does not require us to know a priori either the convergence rate or the

explicit form of the higher-order biases.

We derive a Central Limit Theorem (CLT) for our bias-corrected test statistic under the

null hypothesis. The rate of convergence depends on both dimensions of the panel of the

return observations. It is a product of the number of returns per asset and the square root

of the number of assets used in the analysis. The limiting distribution is mixed Gaussian

and is determined by the idiosyncratic risk in the asset prices. The limiting variance of

the test statistic is random and adapted to the so-called common information set, using

the terminology of Andrews (2005), that includes information about economy-wide variables

such as the systematic risk factors, their volatility, etc. For feasible implementation of a

test of fixed asymptotic size, we propose a simple cross-sectional bootstrap consisting of

resampling with replacement of the available stocks.

The test developed in the current paper is related to two testing problems considered

in earlier work. First, Ang and Kristensen (2012), Reiß et al. (2015) and Kalnina (2023)

develop tests for the constancy of factor loadings of assets over fixed time interval using

high-frequency data. On a theoretical level, the asymptotic setup of these tests is for a

fixed cross-section. It is not clear whether and how these tests can be extended to a high-

dimensional setting, which is the focus of this paper. In addition, the methods of the above-

cited work are designed only for observable factors. As we discussed earlier, the observable

6Earlier work that applies PCA analysis to high-frequency data with large high cross-sectional dimension
include Aı̈t-Sahalia and Xiu (2017) and Pelger (2019, 2020).
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factor setup has drawbacks related to possible spurious time variation in betas induced by

omitted factors or measurement error in the factors. Second, our paper relates to existing

work on testing for structural breaks in factor loadings in classical linear factor models,

see e.g., Breitung and Eickmeier (2011), Chen et al. (2014), Corradi and Swanson (2014),

Yamamoto and Tanaka (2015), Cheng et al. (2016), Baltagi et al. (2017), Su and Wang

(2020) and Bai et al. (2022). The goals of the current paper and this strand of work are

different: in our case we are interested in factor exposures at two fixed distinct points in

time while in the above-cited papers the interest is in long-span properties of linear factor

models. The implication of this difference in goals is that in our setup the rotation matrices

of the factor loadings over the two time periods, up to which the factor loadings can be

identified, are random and can differ even under the null hypothesis. This is not the case in

the long-span tests for structural stability of linear factor models. As a result, one cannot

adapt the test statistics of the structural break cited above to our problem. Instead, our

statistic is based on the projection discrepancy in the estimated factor loadings over the two

periods, which is rotation invariant. Another difference between the above strand of work

and our paper is that the limit distribution here is mixed Gaussian and common shocks can

impact the limiting variance of our test statistic.

The rest of the paper is organized as follows. We introduce the continuous-time factor

model and state the assumptions in Section 2. Section 3 presents the sampling scheme

and the discrete-time factor model of asset returns. The test and its asymptotic properties

are given in Section 4. Section 5 contains a simulation study and Section 6 an empirical

application. Proofs are given in the Supplementary Appendix.

Throughout the paper, we will use ∥A∥F and ∥A∥ to denote the Frobenius norm and

operator norm of a matrixA, respectively. In addition, for a random sequenceXnp, depending

on n and p, and a nonrandom nonzero sequence anp, we write Xnp = oP (anp) if Xnp/anp

converges to zero in probability, and Xnp = OP (anp) if Xnp/anp = OP (1), when n, p → ∞.

2 The continuous-time factor model and assumptions

Our interest in this paper is in the behavior of a p×1 vector of log asset prices, denoted by Y ,

at two fixed points in time. The vector of prices is defined on the filtered probability space

(Ω,F ,P, (Ft)t≥0) and is assumed to obey the following time-varying factor model dynamics:

dYt = αtdt+ βtdft + dJt + dϵt, (1)
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where αt, Jt and ϵt are p× 1 vectors, ft is K × 1 vector of diffusive systematic risk factors,

for some positive integer K, and βt is a p×K matrix of factor loadings. The diffusive factors

evolve according to

dft = ΛtdWt, (2)

where Λt is K × K matrix-valued stochastic process, and Wt is K × 1 standard Brownian

motion. The systematic risk factors ft are latent and our interest in this paper is to design

a test for the hypothesis that the linear span of the factor loadings at two distinct points in

time, 0 < b < a, is the same.

The diffusive idiosyncratic risk is given by

dϵt,j = σt,jdWt,j, j = 1, ..., p, (3)

where ϵt,j is the j-th element of ϵt, and where {Wt,j}j=1,...,p is a sequence of independent

univariate Brownian motions, which are also independent from Wt that drives the systematic

risk factors.

Finally, the process J is a pure-jump process, i.e., it is of the form Jt =
∑

s≤t ∆Ys, where

as usual ∆Ys = Ys − Ys− and Ys− = lim
u↑s

Yu. We are not interested in the jumps of the asset

prices in this paper, and therefore we will make no assumptions regarding whether they

arrive together in the asset prices or not. We note that the analysis of the cross-sectional

dependence in J requires different techniques than the ones used here, see e.g., Jacod et al.

(2022).

We need several assumptions for deriving our results. For stating these assumptions,

we introduce the “common shocks” σ-algebra C, using the terminology of Andrews (2005),

which contains the information about the systematic risk and more generally about any

economy-wide random variable. The processes Λ, W and f are all adapted to C.

Our interest in this paper is in the factor loadings βb and βa, where 0 < b < a are two

specific points in time of interest. For stating the assumptions about them, we partition

them in the following way

βb =(β
(1)
b , β

(2)
b , β

(3)
b , 0p×K4),

βa =(β(1)
a , β(2)

a , 0p×K3 , β
(4)
a ),

(4)

where β
(j)
c are of dimensions p ×Kj, with K1 +K2 +K3 +K4 = K. In addition, we have

β
(1)
a = β

(1)
b H for some invertible K1 ×K1 matrix H.

With this decomposition of the two factor loadings, we allow for: (1) a common compo-

nent in them up to a rotation, β
(1)
b and β

(1)
a , (2) different nontrivial components, β

(2)
b and
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β
(2)
a , and (3) components of the factor loadings (or equivalently of the factors) which are

present in one of the two periods only, β
(3)
b and β

(4)
a . We combine the unique components of

the factor loadings over the two periods into:

βr
b = (β

(1)
b , β

(2)
b , β

(3)
b ), βr

a = (β(1)
a , β(2)

a , β(4)
a ) and βmix = (β

(1)
b , β

(2)
b , β

(3)
b , β(2)

a , β(4)
a ), (5)

which are of size p× (K1 +K2 +K3), p× (K1 +K2 +K4) and p× (K +K2), respectively.

We next denote by Λr
c the sub-matrix of Λc corresponding to columns of βr

c and by Λmix

the sub-matrix of (Λa,Λb) corresponding to columns of βmix. Formally, consider partitioning

of the identity matrix IK×K into IK×K = (ι′1, ι
′
2, ι

′
3, ι

′
4), with ιj being of size Kj × K for

j = 1, .., 4. With this notation, we set

Λr
b = ((ι1Λb)

′, (ι2Λb)
′, (ι3Λb)

′), Λr
a = ((ι1Λa)

′, (ι2Λa)
′, (ι4Λa)

′), (6)

Λmix = ((ι1Λb)
′, (ι2Λb)

′, (ι3Λb)
′, (ι2Λa)

′, (ι4Λa)
′). (7)

Finally, we set

Σr
f,c = Λr

c(Λ
r
c)

′, Σf,mix = ΛmixΛ
′
mix, c ∈ {a, b}. (8)

Our assumptions are as follows:

A1. There exists a sequence T1, T2, ... of stopping times increasing to infinity, such that for

s, t ≤ Tm, we have:

sup
j≥1

E|χt,j|q + sup
j≥1

E|Jt,j|q < ∞, for any q > 0, (9)

sup
j≥1

E|χt,j − χs,j|2 + sup
j≥1

|E(χt,j − χs,j)|+ sup
j≥1

P(Jt,j − Js,j ̸= 0) ≤ Cm|t− s|, (10)

E∥Λt − Λs∥2F + ∥E(Λt − Λs)∥F ≤ Cm|t− s|, (11)

for some sequence of positive constants Cm, and where χt,j is one of αt,j, βt,j and σt,j.

Furthermore, βt remains constant in local neighborhoods of t = a, b, i.e., we have βt = βc for

t ∈ (c− ε, c+ ε) with ε > 0 being an arbitrary small number and c = a, b.

A2. (i) Conditionally on C, the processes Wt,j, βt,j, σt,j and Jt,j are independent across j.

Furthermore, βc,j and σc,j are identically distributed across j and P(σc,1 ̸= 0 |C) > 0 a.s., for

c = a, b.

(ii) Denote Σr
β,c = plim

p→∞

1
p
βr′
c β

r
c and Σβ,mix = plim

p→∞

1
p
β′
mixβmix, for c ∈ {a, b}. Then, the

eigenvalues of the matrices Σr
β,c, Σ

r
f,c, Σβ,mix and Σf,mix are all bounded away from zero and

infinity, almost surely. In addition, the matrix H that satisfies β
(1)
a = β

(1)
b H has eigenvalues
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that are bounded away from both zero and infinity.

(iii) In the case when βr
b = βr

aH, for an invertible matrix H, letMc = (Σr
β,c)

1/2Σr
f,c(Σ

r
β,c)

1/2,

for c ∈ {a, b}, and also let Mab := (Σr
β,a)

1/2(Σr
f,a + HΣr

f,bH
′)(Σr

β,a)
1/2. Then, Ma,Mb and

Mab are of full rank and have distinct non-zero eigenvalues. That is, if the eigenvalues of

any of these matrices are denoted with v1, ..., vk, then there is c0 > 0 so that |vi−vj| > c0 > 0

for all i ̸= j.

A3. We have

max
i=1,...,p

σ2
c,i = OP (ζp), c = a, b, as p → ∞, (12)

for some deterministic sequence ζp, with limp→∞ ζp being either finite or infinite.

We make several comments regarding the above assumptions. First, assumption A1 is

a standard integrability and smoothness condition for the various processes entering the

dynamics of Y . In particular, the second and third conditions in A1 are satisfied when the

processes involved in them are Itô semimartingales. We note also that the moment conditions

in A1 are for the stopped processes, so the values of the processes in A1 at a point in time

might not have finite moments.

Assumption A2(i) is about cross-sectional dependence. We note that we are interested

in such dependence only after conditioning on the common information set C. Without

conditioning on C, the processes in A2(i) will typically have strong cross-sectional dependence

due to their systematic risk exposure. The requirement for identical distribution across j of

βc,j and σc,j, conditional on C, is for ease of exposition. It can be replaced with a weaker one

requiring convergence in probability of cross-sectional averages involving βc,j and σc,j. The

bound from below for the eigenvalues of Σr
β,c and Σr

f,c in A2(ii) guarantees that the factors

corresponding to βr
c are active, i.e., have nontrivial variance, and none of the factor loadings

are redundant, i.e., are not in the linear span of the other factors.

Finally, assumption A3 is a bound on the cross-sectional maxima of the idiosyncratic

variance. This assumption will hold with finite limp→∞ ζp if, for example, the idiosyncratic

variances are adapted to the common shock information set C. This will be also the case

if, after conditioning on C, σc,j are all bounded for c = a, b. If neither of the above two

conditions hold, then the rate of growth of ζp as the cross-sectional dimension increases can

be determined by use of extreme value theory, see e.g., chapter 3 of Embrechts et al. (2013).

For example, if the C-conditional law of σ2
c,i is exponential-like, then ζp = log(p) while if the

C-conditional law of σ2
c,i is Gaussian-like, then ζp =

√
log(p).

Overall, the assumptions A1-A3 are relatively weak and allow for many relevant features

of assets’ dynamics that have been documented empirically in earlier work. In particular,

we allow for stochastic volatility in asset prices of general form. Idiosyncratic volatility of
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individual assets can have a common component (adapted to C). Shocks to asset prices

and to stochastic volatility can be correlated, i.e., the so-called leverage effect is allowed for.

Both idiosyncratic jumps that arrive at distinct times in asset prices and systematic jumps

that arrive together in asset prices can be present. Systematic jumps do not need to obey a

factor model. The factor exposures towards diffusive risk can change over time.

3 Sampling scheme and the discrete factor model

Prices are observed at times 0, T
n
, 2T

n
..., T , for some fixed T and n asymptotically increasing.

We have 0 < b < a < T . The gap between observations is denoted with ∆n = T
n
and the

increment of a generic process X with

∆n
i X = Xi∆n −X(i−1)∆n . (13)

Since the factor loadings are allowed to vary over time, when forming the test, we will

use local blocks of kn increments around the times b and a, where kn is a sequence of

integers increasing to infinity and satisfying kn∆n → 0, so that the local windows used in

the estimation around t = a and t = b are both asymptotically shrinking. The indices of the

price increments used in the construction of the test are given by

ict = ⌊c/∆n⌋ − kn + t, for c = a, b and t = 1, ..., kn. (14)

The price increments will be trimmed, following Mancini (2001), in order to eliminate

the price jumps. More specifically, let h(x, a) = (x ∨ −a) ∧ a, for some x ∈ R and a ∈ R+.

We will then denote the trimmed price increments as

Y c,tj =
h(∆n

ict
Yj, γj∆

ϖ
n )√

∆n

, Y c =
(
Y c,tj : t = 1, ..., kn, j = 1, ..., p

)
, for c = a, b, (15)

and for some γj > 0 that is uniformly bounded in j and ϖ ∈ (0, 1/2). We will introduce

similar notation for the increments of the latent factors and of the idiosyncratic risk:

f c,t =
∆n

ict
f

√
∆n

, ϵc,tj =
∆n

ict
ϵtj√
∆n

, for c = a, b, t = 1, ..., kn, j = 1, .., p, (16)

and

F c =
(
f c,t : t = 1, ..., kn

)
, U c = (ϵc,tj : t = 1, ..., kn, j = 1, ..., p) , for c = a, b. (17)
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Finally, we denote the residual component of asset returns as follows

rc,tj =
1√
∆n

(∫ ict∆n

(ict−1)∆n

αs,jds+∆n
ict
Jj

)
1{|∆n

ict
Yj |≤γj∆ϖ

n }

+ (γj∆
ϖ−1/2
n − ι′jβcf c,t − ϵc,tj)1{∆n

ict
Yj>γj∆ϖ

n }

− (γj∆
ϖ−1/2
n + ι′jβcf c,t + ϵc,tj)1{∆n

ict
Yj<−γj∆ϖ

n },

(18)

where ιj is a p × 1 vector with jth element of 1 and rest of the elements being zero. The

corresponding matrix of residuals is Rc = (rc,tj : t = 1, ..., kn, j = 1, ..., p), for c = a, b.

With the above notation, we have the following discrete factor model for the truncated

price increments over the two time windows:

Y c = βcF
′
c + U c +Rc, c = a, b, (19)

where Y c, U c and Rc are p× kn matrices, F c is a kn ×K matrix and βc is a p×K matrix,

and provided kn∆n < ε with ε being the constant in assumption A1. One can show also that

in a certain asymptotic sense, see the proofs for formal results, the matrix of residual terms

Rc is small. This is the reason why we refer to the above representation for the truncated

increments of the asset prices as an discrete factor model.

4 Formulation and asymptotic properties of the test

Our goal is to test whether the number of systematic factors and the factor loadings, up to

a rotation, are the same at two distinct points in time. That is, we are interested in testing

the hypothesis:

H0 : span(βb) = span(βa), (20)

where, for an arbitrary matrix β, span(β) denotes the linear space spanned by the columns

of β. The null hypothesis is equivalent to: βb = βaH for some invertible matrix H. Using

the notation in (4), under the null, K = K1, and K2 = K3 = K4 = 0, so βc = β
(1)
c . First, we

start with estimating the dimensions of βb and βa, Ka and Kb, respectively. Following that,

we introduce our test statistic based on projection discrepancy of estimated factor loadings

over the two periods and derive its limit distribution.
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4.1 Formulation of the test

4.1.1 Step 0: Estimating the number of factors

We estimate separately the number of factors for the two time windows, by applying an

information criterion as in Bai and Ng (2002). We extend their analysis here to our high-

frequency setting. Alternative methods for estimating the number of factors include Ahn

and Horenstein (2013); Hallin and Lǐska (2007); Onatski (2010); Kapetanios (2010), among

many others.

Let vc,1 ≥ vc,2 ≥ ... be the sorted eigenvalues of

Sc =
1

knp
Y cY

′
c, c ∈ {a, b}. (21)

The number of factors Kc is estimated by

K̂c = argmin
0≤K≤Kmax

log
∑
m>K

vc,m +K
kn + p

knp
gnp, (22)

for some deterministic sequence gnp > 0 and a predetermined upper bound Kmax, both

of which go asymptotically to infinity. In our implementation of the test, we use gn,p =

log
(

knp
kn+p

)
as in Bai and Ng (2002). We also note that we allow for K = 0 in the search set

for K̂c.

In addition to the dimensions of βb and βa, we also need the dimension of the non-

redundant factor loadings across the two periods. We denote Kmix = dim(βb, βa), with

dim(β) being the dimension of the linear space spanned by the columns of an arbitrary

matrix β. Our estimator of Kmix is K̂mix = min{K̂mix,o, K̂mix,e}, where K̂mix,o and K̂mix,e

are estimates of the number of factors of two return panels that partition the pooled data
1

knp
(Y b, Y a)(Y b, Y a)

′ into one from odd and even increments, respectively. Note that K̂mix,o

and K̂mix,e are both valid estimators of Kmix. For this reason and in order to keep the factor

specification more parsimonious in finite samples, we set K̂mix = min{K̂mix,o, K̂mix,e}. The

consistency of (K̂a, K̂b, K̂mix) is established in the proofs of our theoretical results.

Remark 4.1. We assume that the risk factors that assets are exposed to are strong, in the

sense that they satisfy the well-known pervasive condition. In this setting the number of

latent factors, while unknown, are consistently estimable. It is not difficult to extend the

study to allow a mix of strong and so-called “semi-strong” factors, where the strength of the

factors might also affect the rate of convergence of the test statistics. On the other hand,

our assumption rules out the case of weak factors in the sense of Onatski (2012). Studying

the span of betas corresponding to these types of weak factors is an open question.
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4.1.2 Step 1: The projection discrepancy statistic

We proceed with formulating our test. Let β̂c denote the p× K̂c estimate of βr
c constructed

as follows. Each column of β̂c/
√
p is a p× 1 eigenvector of the sample covariance matrix Sc

defined in (21). Our test statistic is then based on the projection discrepancy ∥Pβ̂a
−Pβ̂b

∥2F ,
where for arbitrary matrix A, PA = A(A′A)−1A′, is p× p matrix and ∥A∥2F = trace(A′A).

Using standard PCA analysis, it can be shown that, under the null hypothesis and for

some normalization matrices Âa, Âb and Ĝ of dimensionK×K, each with norm of asymptotic

order OP (1),
7, we have with probability approaching one:

∥Pβ̂a
− Pβ̂b

∥2F = µ̂a + µ̂b − µ̂ab +∆5,

µ̂a =
2

pk2
n

tr Â′
a[F

′
aU

′
aUaF a]Âa

µ̂b =
2

pk2
n

tr Â′
b[F

′
bU

′
bU bF b]Âb

µ̂ab =
2

pk2
n

tr Â′
aF

′
aU

′
aU bF bÂbĜ, (23)

where ∆5 collects all higher-order terms. The leading term in the above expansion is µ̂a +

µ̂b − µ̂ab. Its components, µ̂a, µ̂b and µ̂ab, are jointly asymptotically normal but only µ̂ab

has zero mean. The other terms µ̂a and µ̂b are chi-square statistics with growing degrees of

freedom p and whose means are nonzero. Therefore, we need to center them.

It can be shown that the asymptotic mean of µ̂a is:

Bc =
2

k2
n

tr Â′
cF

′
cF cÂcE(σ2

c,1|C),

where E(σ2
c,1|C) denotes the expected idiosyncratic volatility conditional on the common

information set C (recall from assumption A2(i) that σ2
c,i are identically distributed across

i = 1, 2, ..., for c = a, b conditional on C). Bc is of order OP (k
−1
n ). After centering using Bc

for c ∈ {a, b}, we have

∥Pβ̂a
− Pβ̂b

∥2F − (Ba +Bc) = (µ̂a −Ba) + (µ̂b −Bb)− µ̂ab +∆5. (24)

All three leading terms (µ̂a − B̂a), (µ̂b − B̂b) and µ̂ab are of order OP (k
−1
n p−1/2), which is the

rate of convergence of our (unscaled) test statistic, and as we show in the Appendix, the

higher-order term ∆5 converges at a faster rate.

It remains to replace Bc by a consistent estimator B̂c. Towards this end, define the

7Note that under the null hypothesis Ka = Kb = K and P(K̂a = Ka, K̂b = Kb) → 1 from Theorem B.1
in the Appendix.
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factor estimator F̂c = Y
′
cβ̂c/p, and the estimated idiosyncratic terms Ûc = Y c − β̂cF̂

′
c, whose

elements are denoted by ϵ̂c,ti. Our estimate for the asymptotic bias of µ̂c, c ∈ {a, b}, is then
given by

B̂c =
2

kn
tr(Q̂−1

c ) ̂E(σ2
c,1|C), c ∈ {a, b}, (25)

where Q̂c is a K̂c × K̂c diagonal matrix of the top eigenvalues of Sc. To understand the

intuition behind this expression, note that Bc depends on the rescaled factors F cÂc. Al-

though the scaling matrix Âc is not estimable, the rescaled factor can be directly estimated

by F̂cQ̂
−1
c , where the scaling matrix Q̂−1

c is feasible. As such, the following term 1
kn
Â′

cF
′
cF cÂc

in Bc can be estimated by:

Q̂−1
c

1

kn
F̂ ′
cF̂cQ̂

−1
c = Q̂−1

c , given the identity
1

kn
F̂ ′
cF̂c = Q̂c.

The problem of estimating the conditional mean of idiosyncratic volatility E(σ2
c,1|C) is much

more dedicate. A natural candidate is 1
knp

∥Ûc∥2F . Unfortunately, this estimator (although

consistent) under-estimates its population counterpart 1
knp

∥U c∥2F due to higher-order bias

terms. This would lead to underestimation of E(σ2
c,1|C) in finite samples. Therefore, we

employ a bias-adjusted estimator defined as

̂E(σ2
c,1|C) :=

1

knp
∥Ûc∥2F + δ, (26)

where the extra term δ is given by

δ =
1

knp
∥Ûc∥2F K̂c/kn +

1

p2
tr(β̂′

cDcβ̂c), Dc = diag

{
1

kn

kn∑
t=1

ϵ̂2c,ti, i = 1, ..., p

}
. (27)

Obviously, δ ≥ 0, and as we show in the proof, this term corrects for the downward bias in

the naive estimator.

Altogether, the projection discrepancy statistic is then

Â := ∥Pβ̂a
− Pβ̂b

∥2F − (B̂a + B̂b). (28)

4.1.3 Step 2: The bias-mimicking statistic

Although the expression in (28) is an asymptotically unbiased statistic under the null, higher-

order biases might nevertheless lead to finite sample distortions of a test based on it. One

approach to correct for those is to use a Jackknife method. Such a method, however, can

eliminate only a bias of specific asymptotic order in terms of kn and p. In our situation, the

13



higher-order bias terms can be multiple and with different asymptotic orders that depend on

(kn, p) in a rather complicated way. For this reason, we propose an alternative bias-reduction

method that is more robust to the form of higher-order biases than the Jackknife.

The idea of our method is to center the statistic in (28) by a projection discrepancy of

factor loadings estimated from two return panels of the same dimension as Y b and Y a and

which have the same number factors both under the null and the alternative hypotheses.

These two return panels are formed from pooling the return data from the two periods and

splitting the combined data set into two: one formed from the odd increments and one from

the even ones. Note that the number of factors of each of the two return panels is Kmix, and

under the null hypothesis, Ka = Kb = Kmix.

We now provide the details. Let Y a,e and Y b,e denote the sub-matrices of Y a and Y b

corresponding to even columns. We define in a similar way Y a,o and Y b,o from the odd

columns. We then form the pooled data sets corresponding to odd and even increments:

Y mix,k = (Y a,k, Y b,k), k ∈ {o, e}.

Let β̂mix,k be the p× K̂mix matrix of PCA estimates for beta from the data matrix Y mix,k.

Now, consider the projection discrepancy:

Âmix := ∥Pβ̂mix,o
− Pβ̂mix,e

∥2F − (B̂mix,o + B̂mix,e), (29)

which is a centered statistic similar to the one in (28) and the bias-correction terms are given

by

B̂mix,k =
2

k2
n

tr Q̂−1
k F̂ ′

a,kF̂a,kQ̂
−1
k

̂E(σ2
a,1|C) +

2

k2
n

tr Q̂−1
k F̂ ′

b,kF̂b,kQ̂
−1
k

̂E(σ2
b,1|C),

where Q̂k is a K̂mix × K̂mix diagonal matrix of top eigenvalues of 1
pkn

Y
′
mix,kY mix,k; F̂c,k =

Y
′
c,kβ̂mix,k/p for c ∈ {a, b}, and where we continue using ̂E(σ2

c,1|C) as our estimate of the

idiosyncratic variance.

The new projection discrepancy in (29) is negligible in the sense that Âmix = oP (1) under

the null and alternative hypotheses. Its exact order of magnitude is OP (k
−1
n p−1/2).

Altogether, our final test statistic is given by:

S := kn
√
p
(
Â − Âmix

)
. (30)

In Section 4.3, we will show formally that the centering by Âmix can indeed lead to bias-

reduction and in turn allow for weaker conditions on the relative size of the two dimensions
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of the return panel used in the estimation.

4.1.4 Step 3: The cross-sectional bootstrap

For feasible inference, we propose a simple to implement bootstrap. Under the null hypoth-

esis, the test statistic has the asymptotic expansion

S =
1
√
p

p∑
i=1

zi,n + oP (1),

where zi,n is a zero-mean triangular array, whose variance depends on the asymptotic vari-

ances of ∥Pβ̂a
− Pβ̂b

∥2F and ∥Pβ̂mix,o
− Pβ̂mix,e

∥2F as well as their asymptotic covariance. To

avoid computing estimates for these sophisticated expressions, we rely on a cross-sectional

bootstrap by re-sampling the rows of the p× (2kn) matrix (Y b, Y a).

More specifically, let {(Y b,i, Y a,i)
∗ : i = 1, ..., p} be a simple random sample with replace-

ment from {(Y b,i, Y a,i) : i = 1, ..., p}, where Y
′
c,i denotes the 1× kn vector of the i-th row of

Y c. Let (Y
∗
a, Y

∗
b) denote the resulting bootstrap matrix. We compute the test statistic on

the new data as:

S∗ := kn
√
p
[
∥P ∗

β̂a
− P ∗

β̂b
∥2F − (B̂∗

a + B̂∗
b )
]
− kn

√
pA∗

mix,

where (P ∗
β̂c
, B̂∗

c ,A∗
mix) denotes the bootstrap counterpart of (Pβ̂c

, B̂c, Âmix). We repeat this

procedure many times and compute q∗τ{S∗ − S}, the τth upper quantile of the bootstrap

distribution of S∗ − S, i.e., P(S∗ − S > q∗τ{S∗ − S}) = τ . The critical region for a test of

size τ is then given by

S > q∗τ{S∗ − S}.

4.2 Limit behavior of the test

Our goal in this section is to derive the behavior of the test statistic S, defined in (30), under

the null hypothesis and a set of alternative hypotheses. We start with a CLT result under

the null. Henceforth, L|C and L|F denote C-conditional and F -conditional, respectively,

convergence in law, see Section VIII.5(b) in Jacod and Shiryaev (2003).

Theorem 4.1 (size). Suppose Assumptions A1-A3 hold as well as H0 given in (20). Further,

let

Kmax → ∞, Kmax/
√

kn → 0, gnp → ∞,

(
1

kn
+

1

p

)
gnp → 0,

ζp
gnp

→ 0, (31)
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(
p

k2
n

+
k2
n

p3

)
ζ8p → 0 and pkn∆

2ϖ̃
n → 0, (32)

as n, p → ∞ and for some ϖ̃ ∈ (0, ϖ) that is arbitrary close to ϖ ∈ (0, 1/2). Then, we have

S L|C−−→ Zd, (33)

where Zd is defined on an extension of the original probability space and, conditional on C,
it is a mean-zero normal random variable with some C-adapted variance. In addition, the

bootstrap statistic satisfies

S∗ − S L|F−−→ Z∗
d , (34)

where Z∗
d has the same F-conditional law as that of the C-conditional law of Zd.

Hence, for any τ ∈ (0, 1), we have

P(S > q∗τ{S∗ − S}) → τ. (35)

The conditions in (31)-(32) put restrictions on the asymptotic size of the two dimensions

of the return panel and on the tuning parameters for choosing the number of factors. The rate

requirements for gnp are relatively weak. We make several comments about the conditions

in (32). First, it is optimal to pick the jump truncation parameter ϖ arbitrary close to,

but below, 1/2. This is similar to other applications of jump truncation procedures, see

e.g., Jacod and Protter (2012). The second condition in (32) is due to the effect of the

discretization error on the estimation, i.e., due to the residual term Rc in the discrete factor

model in (19). The second condition in (32) is also needed in order to guarantee that the

error due to the time-variation in volatility over the local windows has only asymptotically

negligible effect on the estimation. This condition puts an upper bound on the size of

the cross-sectional dimension p relative to the length of the two local windows used in the

estimation.

Second, the conditions for p and kn in (32) allow for the standard case in which p and

kn grow at the same rate, provided of course ζp increases at a slower rate than p1/8 (see the

discussion after assumption A3 regarding the size of ζp). We note that the first of the two

conditions in (32) allows for either of the two dimensions of the return panel to grow at a

faster rate than the other one.

The rate of convergence of our statistic is determined by both dimensions of the return

panel. This is unlike the rate of convergence of the estimators of the factor loadings of

individual assets, i.e., of the rows of β̂c, which depends only on kn, see e.g., Bai (2003).

The bias-correction term B̂a + B̂b is of asymptotic order OP (1/kn). This term becomes non-
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negligible when multiplied by kn
√
p, and therefore such a bias-correction of the projection

discrepancy statistic is necessary for the CLT result.

We finish this section with characterising the behavior of our statistic under a set of

alternatives. This is formally done in the next theorem.

Theorem 4.2 (power). Suppose Assumptions A1-A3 hold and the conditions in (31)-(32)

are satisfied. In addition, let either of the following two alternatives hold:

Alternative (i): βa = (β
(1)
b H,0p×K3), and βb = (β

(1)
b , β

(3)
b ), so K2 +K4 = 0.

Alternative (ii): βa = β
(2)
a , and βb = β

(2)
b , so K1 +K3 +K4 = 0. Also, there is c > 0 so

that with probability approaching one,

min
H∈RK×K

1
√
p
∥βaH − βb∥F > c.

Then, under either alternative, for any τ ∈ (0, 1),

P(S > q∗τ{S∗ − S}) → 1.

The result of Theorem 4.2 shows that a one-sided test based on the statistic S will have

power against two types of alternatives.

The first alternative covers a situation in which the cross-section of assets at one of the

two time points that are compared contains more systematic risk factors than the other.

We can think of this scenario as a situation in which some systematic risk factors become

dormant over certain periods of time or alternatively as a situation in which some risk factors

appear only at some unique points of time (e.g., following the release of a macroeconomic

announcement). We note that because of the invertibility of Σr
β,c from Assumption A2(ii),

the probability limit of the Schur complement 1
p
β
(3)′

b (I − P
β
(1)
b
)β

(3)
b is also invertible. This

intuitively means that asymptotically β
(3)
b is not in the linear space of β

(1)
b .

The second alternative that we consider in Theorem 4.2 is one in which the number of

systematic risk factors at the two time points is the same but the linear spaces spanned

by the factor loadings differ. Our test does not have power against situations in which the

factor loadings of only a finite number of assets change. For the test to have power, the

change in the factor loadings should be pervasive, i.e., it should affect an increasing number

of assets. Note that in many applications in finance, one is interested in large portfolios of

assets constructed on the basis of their factor loadings. For these types of applications, it is

the pervasive changes in factor loadings that matter and our test is designed to detect those.
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4.3 Higher-order bias correction using Âmix

Recall that our test statistic is defined as S = kn
√
p(Â − Âmix), where

Â = ∥Pβ̂a
− Pβ̂b

∥2F − (B̂a + B̂b),

and Âmix is the bias-mimicking statistic that is defined similarly to Â but by return matrices

whose columns are mixtures of odd and even observations within the two time periods. As

we mentioned earlier, this term can provide higher-order bias corrections.

In this section we formalize this statement by showing that including Âmix in S can

allow for weaker condition for the asymptotic size of kn relative to p. This result is rather

complicated to establish in general. We will illustrate it here under the following stronger

condition, which essentially requires volatilities to stay constant in the two periods:

A4. Suppose that under the null βb = βa, Λb = Λa and σ2
b,i = σ2

a,i, for i = 1, .... In addition,

suppose that Λt and {σ2
t,i}i≥1 remain constant for t ∈ (c − ε, c + ε) with ε > 0 being an

arbitrary small number and c = a, b.

From our discussion in Sections 4.1.2, Â can be expressed as:

kn
√
pÂ = Ẑ1 + R̂A,

where Ẑ1 is the leading term that admits a CLT and the residual term

R̂A :=
√
pkn∆5 −

√
pkn

∑
c∈{a,b}

(B̂c −Bc),

contains higher-order terms. In the proof of Theorem 4.1 we show that Ẑ1 admits a CLT,

provided only kn, p → ∞, ζp/p → 0 and pkn∆n = Op(1) hold. These conditions are much

weaker than those in (32). The latter are needed to show that R̂A is negligible under the

null hypothesis. In particular, one of the conditions in (32) is p
k2n
ζ8p → 0. This condition

limits how fast p can grow relative to kn and is due to higher-order biases in R̂A. In fact,

we have the following higher-order expansion:

R̂A =

√
p

kn
RA+ oP (1) + oP

(√
p

kn

)1/2

, (36)

where RA is a random variable (depending on the factor loadings and the volatilties) given

in the Appendix.
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Using Assumption A4, we can make a similar expansion for Âmix:

kn
√
pAmix = Ẑ1,mix + R̂Amix,

where Ẑ1,mix is the leading term that admits a CLT and the residual term R̂Amix yields a

same higher order bias term:

R̂Amix =

√
p

kn
RA+ oP (1) + oP

(√
p

kn

)1/2

. (37)

We note that (Ẑ1, Ẑ1,mix) admit a joint CLT and the limit of Ẑ1,mix is non-trivial in general.

This means that the centering with Âmix affects the limit distribution of our statistic.

Comparing (36) and (37), we get R̂A − R̂Amix = oP (1) + oP

(√
p

kn

)1/2
, i.e., we have

bias cancellation and this difference is negligible under a weaker condition for kn and p. In

particular, this argument will allow us to weaken the condition from p
k2n
ζ8p → 0 to allowing

p
k2n
ζ8p → κ for some κ ≥ 0. Formally, we have the following result:

Theorem 4.3. Suppose Assumptions A1-A4 hold as well as H0 given in (20). Then

S =
1
√
p

p∑
i=1

zi,n + R̂A − R̂Amix,

where 1√
p

∑p
i=1 zi,n

L|C−−→ Zd, for Zd being the limit variable in (33), and R̂A and R̂Amix

satisfy (36) and (37), with the expression for RA given in equation (E.1) in the Appendix.

Hence, R̂A − R̂Amix = oP (1) if the requirement p
k2n
ζ8p → 0 in (32) is replaced with the

weaker one p
k2n
ζ8p → κ, for some finite κ ≥ 0, and all other conditions in (31)-(32) remain

true.

As is clear from the discussion above, the improvement in the above theorem is due to

cancellation of biases in Â and Âmix. Naturally, such improvement will not be available if

one was to use kn
√
pÂ instead. We note that the improvements offered by centering with

Âmix are likely much larger than what is implied by Theorem 4.3 because here we only

made an expansion of R̂A and R̂Amix with the leading term being of order
√
p/kn. A full

asymptotic expansion of these higher-order terms that can show further bias cancellations is

much harder to prove and we do not do this here. In our Monte Carlo simulations, we will

show the practical gains in realistic situations from using Âmix.
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4.4 Time aggregation

In order to reduce the uncertainty from estimating the unknown number of factors, we can

consider pooling data in the estimation of the factor loadings over several local windows.

This can be done, of course, under the assumption that the factor loadings remain constant

(up to rotation) over these periods. The results of Theorems 4.1-4.2 are easily extended to

cover this situation and in this section we only sketch such an extension.

We denote two finite sets of points in time with A and B. All of the elements of A and B

are in the interior of [0, T ]. The number of factors and factor loadings at each point in each

of these two sets are the same (up to a multiplication by a rotation matrix) under the null

hypothesis. The counterpart of Y c is denoted with Y C, for c = a, b and C = A,B. Then

we set SC = 1
Tknp

Y CY
′
C, for C = A,B and where T denotes the number of elements in C

(thus, this number is the same for A and B). The counterpart of β̂c, when Sc is replaced

with SC, is denoted with β̂C and that of Q̂c with Q̂C. With this notation, the bias correction

term is now given by

B̂C =
2

T2k2
n

∑
c∈C

{
tr
(
Q̂−1

C F̂ ′
cF̂cQ̂

−1
C

)
̂E(σ2

c,1|C)
}
. (38)

Similarly, let Q̂mix,k denote the diagonal matrix of the top Kmix,k eigenvalues from the

aggregated matrix (Y A,k, Y B,k) and let F̂c,k denote the counterpart of F̂c for k ∈ {o, e}. The
bias correction term for Âmix is

B̂mix,k =
2

T2k2
n

tr

(∑
a∈A

Q̂−1
mix,kF̂

′
a,kF̂a,kQ̂

−1
mix,k

̂E(σ2
a,1|C) +

∑
b∈B

Q̂−1
mix,kF̂

′
b,kF̂b,kQ̂

−1
mix,k

̂E(σ2
b,1|C)

)
.

We can then show, under the same conditions as those of Theorem 4.1, the following

convergence result under H0:

Tkn
√
p
[
∥Pβ̂A

− Pβ̂B
∥2F − (B̂A + B̂B)− Âmix

]
L|C−−→ Zd. (39)

We can similarly establish the counterparts of the bootstrap result in Theorem 4.1 as well

as the power result of Theorem 4.2 adapted to the current situation.
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5 Simulation study

5.1 Setting

The model used in the Monte Carlo is given by

dYt,j = σt

(
β

′

jΣ
1/2
f dWt + σjdWt,j

)
, j = 1, ..., p, (40)

where the univariate stochastic volatility process σt has the following square-root diffusion

dynamics

dσ2
t = 8.3(1− σ2

t )dt+ σtdBt, (41)

with Bt being a standard Brownian motion that is independent from Wt and {Wt,j}j≥1.

The process σt drives variation both in diffusive and idiosyncratic variances. The parameter

specification of the dynamics of σt implies that the half-life of a shock to it is one month.

The specification of the factors and the factor loadings is calibrated to match estimates

from five-minute frequency S&P500 returns over January 2021. We run PCA on the high-

frequency returns for K = 3 factors, and calculate the covariance of the estimated factors

Σf , as well as the mean µβ and covariance Σβ of the estimated loadings. We then generate

factor and betas from βi ∼ N(µβ,Σβ), i = 1, ..., p. The calibrated parameters are as follows:

Σf = diag(1.198, 0.377, 0.264)× 10−6, (42)

µβ =

 0.8763

0.2818

−0.2965

 , Σβ =

 0.2326 −0.2474 0.2603

−0.2474 0.9224 0.0837

0.2603 0.0837 0.9139

 . (43)

The scale of the idiosyncrartic variance σj is cross-sectionally i.i.d. and is drawn according

to

σj ∼ Uniform([0.5, 1.5])× g, j = 1, ..., p. (44)

where g = 1.1×10−3 is chosen such that the share of idiosyncratic risk in total asset variance

is around 40% for the median stock in the cross-section.

The unit of time in the above specification of the model is one year. We adopt a business

day time convention, which means that a period from market close on one day to market

close on the next trading day has a length of 1/252.

The specification for the process under the alternative hypothesis is the same as that

under the null described above with one exception regarding the specification of the factor

loadings. Mainly, under alternative A1, the factor loadings at the two time points are given
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by

A1 : β(1)
a = β

(1)
b +N

(
0,

τ

p
∥βb∥2F × I

)
, β(j)

a = β
(j)
b for j ̸= 1, (45)

where β
(j)
c denotes the j-th column of theN×3 matrix βc, for c ∈ {a, b}. The variance τ

p
∥βb∥2F

of the perturbation is chosen such that ∥βa − βb∥2F/∥βb∥2F
P−→ τ as p → ∞, so τ represents

the amount of percentage change of the accumulated signals in betas. We experiment with

τ ∈ {0.01, 0.05} in the simulation.

Under alternative A2, we set one of the columns of βa to be zero, and the other two

columns to be the same as those of βb. Formally,

A2 : β(k)
a = 0, β(j)

a = β
(j)
b for j ̸= k. (46)

In the simulation, we experiment with k ∈ {2, 3}.
We turn next to the observation scheme. We consider a setup that is similar to the one in

our empirical application. In particular, we use a cross-section of p = 500 assets and assume

that we sample asset prices either 80 or 40 times during a trading day. This corresponds

approximately to sampling every five or ten minutes in a 6.5 hour trading day. On each day,

we consider a time window of 2 hours at the beginning and the end of the trading day. Under

the five-minute frequency, there are kn = 24 observations in each of the two time windows

while under the ten-minute frequency, there are kn = 12 observations per window.

In addition, in order to increase precision of estimating the number of factors, we consider

pooling data from several consecutive trading days in the estimation. This is possible if the

factor loadings across the pooled periods remain the same. More specifically, we pool data

over a period of D consecutive days, which results in time-series dimension of our return

panels of D × kn, for D ∈ {1, 2, ..., 30}. This ranges from 12 to 30 × 12 = 360 observations

under the ten-minute frequency, and from 24 to 30 × 24 = 720 observations under the

five-minute frequency.

Finally, the tuning parameters of the test are set as follows. First, the truncation param-

eter is set in the following data-driven way:

ϖ = 0.49 and γj = 4×
√
RVd,j ∧BVd,j, j = 1, .., p, (47)

where RVd,j and BVd,j are realized variance and bipower variation of asset j on the (trading)

day d the increment belongs to, given by

RVd,j =

⌊d/(252∆n)⌋∑
i=⌊(d−1)/(252∆n)⌋+1

(∆n
i Xj)

2, BVd,j =
π

2

⌊d/(252∆n)⌋∑
i=⌊(d−1)/(252∆n)⌋+2

|∆n
i Xj∆

n
i−1Xj|. (48)
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The bipower variation is a jump-robust and tuning-free measure of volatility proposed by

Barndorff-Nielsen and Shephard (2004b). This choice of truncation is commonly adopted

in applied work using truncated variation. Next, as in Bai and Ng (2002), we set gn,p =

log
(

knp
kn+p

)
in the penalty term for determining the number of factors. For determining the

number of factors, we standardize the asset returns by estimates of their volatility in order

to minimize the impact of idiosyncratic volatility.

5.2 Estimating the number of factors

We first analyze the accuracy of estimating the number of factors under the null and alter-

native hypotheses. Figure 1 plots the average of the estimated number of factors over 100

Monte Carlo replications. Recall that Ka, Kb and Kmix respectively denote the true number

of factors for Y a, Y b and Y mix return matrices. The top three panels of the figure plot results

under the null hypothesis, where the true number of factors is 3. The middle three panels

plot results under alternative A1 where only the first columns of βa and βb are different, and

∥βa − βb∥2F/∥βb∥2F ≈ 0.05. Therefore, Kmix = 4 in this case. The bottom three panels plot

results under alternative A2 where the third column of βa is zero, which leads to Ka = 2.
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Figure 1: Estimated number of factors in the Monte Carlo averaged over 100 replications.

From Figure 1 we see that regardless of the scenario, when we use data for just one day

(D = 1) and kn = 12, the estimated number of factors is always equal to 10, the default upper
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Table 1: Rejection Probabilities of the Test S in Monte Carlo.

Number of pooled days D
Hypothesis 1 5 10 15 20 30

kn = 12: ten-minute frequency

H0 0.140 0.038 0.038 0.043 0.041 0.035

A1, τ = 0.01 0.148 0.340 0.828 0.982 1 1

A1, τ = 0.05 0.220 0.992 1 1 1 1

A2, β(2)
a = 0 0.872 1 1 1 1 1

A2, β(3)
a = 0 0.652 0.982 1 1 1 1

kn = 24: five-minute frequency

H0 0.077 0.035 0.033 0.042 0.044 0.037

A1, τ = 0.01 0.154 0.808 0.996 1 1 1

A1, τ = 0.05 0.658 1 1 1 1 1

A2, β(2)
a = 0 0.854 1 1 1 1 1

A2, β(3)
a = 0 0.594 1 1 1 1 1

The results are based on 2, 000 Monte Carlo replications under the null, and on 1, 000 replications under the
alternative. We set the number of bootstrap replications to B = 1, 000. The nominal size of the test is 5%.

bound on the estimate. That is, in this case the number of factors is severely overestimated.

Meanwhile, in all other configurations of kn and D, the number of estimated factors is very

close to its true value.

5.3 Results: size and power of the proposed test

We proceed with examining the rejection probabilities of the proposed test under the various

scenarios. In each Monte Carlo simulation, like in the empirical application, the number of

factors is estimated. The Monte Carlo results are reported in Table 1.

The finite sample size properties of the test appear good across most of the considered

configurations in terms of sampling frequencies and levels of time aggregation, except for

D = 1. In the case of D = 1, noticeable over-rejection occurs (0.141 for kn = 12 and

0.083 for kn = 24). This is mainly due to the fact that the estimated number of factors is

severely overestimated in this case, recall Figure 1. Nevertheless, the size distortions caused

by overestimating K are not very big. In addition, the results reported in Table 1 show

robustness of the test in this regard with the test performing similarly under H0 for low and

high levels of time aggregation.
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Table 2: Rejection Probabilities of the Test kn
√
pÂ in Monte Carlo.

Number of pooled days D
Hypothesis 1 5 10 15 20 30

kn = 12: ten-minute frequency

H0 1 0.004 0.009 0.009 0.009 0.012

A1, τ = 0.01 1 0.244 0.932 0.998 1 1

A1, τ = 0.05 1 1 1 1 1 1

A2, β(2)
a = 0 1 1 1 1 1 1

A2, β(3)
a = 0 1 0.980 1 1 1 1

kn = 24: five-minute frequency

H0 0.044 0.005 0.007 0.012 0.02 0.016

A1, τ = 0.01 0.068 0.946 1 1 1 1

A1, τ = 0.05 0.646 1 1 1 1 1

A2, β(2)
a = 0 0.922 1 1 1 1 1

A2, β(3)
a = 0 0.616 1 1 1 1 1

The results are based on 2, 000 Monte Carlo replications under the null, and on 500 replications under the
alternative. We set the number of bootstrap replications to B = 1, 000. The nominal size of the test is 5%.

Turning next to the behavior of the test under the two considered alternatives, we can

note from the reported results that the test has overall good power. Not surprisingly, the

power increases as we increase the sampling frequency and when we consider higher levels

of time aggregation.

5.4 The role of Âmix

To study the role of including the bias mimicking statistic in our test, Table 2 summarizes

the rejection probabilities when the test statistic does not contain Âmix but is just kn
√
pÂ.

Like the test based on S, we perform cross-sectional bootstrap, and the rejection is based

on the bootstrap critical value. The asymptotic null distribution is still normal. However,

from the results in Table 2, we can now notice nontrivial size distortions.

The size distortions are most extreme in the case D = 1 and kn = 12. Recall from

Figure 1 that for this configuration the number of factors is severely overestimated. The

test, with and without using Âmix, will over-reject the null hypothesis. However, this effect

is much more dramatic without using Âmix. As D increases, the number of factors are

estimated relatively well throughout the simulation replications. In these scenarios, the test
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without Âmix now becomes severely undersized, with type I errors below 0.011. This is

mainly because of the presence of higher-order biases in kn
√
pÂ.

Figure 2: Histogram of t-statistics from 2, 000 replications under the null, with (left panel)
and without (right panel) the bias-mimicking statistics, superposed by the standard normal
density. The t-statistics are standardized by the bootstrap interquartile range. The true
number of factors are used in the construction of the test statistics, and we fix kn = 12 and
D = 5 days.

To illustrate this, we conduct another Monte Carlo experiment under the null, fixing

kn = 12 and D = 5 days and using the true number of factors in the construction of the

test. Figure 2 plots the histograms of the standardized test statistics with (left panel) or

without (right panel) the centering by the bias-mimicking statistic. The test statistics are

standardized by the bootstrap interquartile range, defined as

σ∗ =
q∗0.25 − q∗0.75
z0.25 − z0.75

,

where q∗τ is the τ -th upper quantile of the bootstrap statistic and zτ is the τ -th upper quantile

of the standard normal distribution. We see from Figure 2 that, without centering using the

bias-mimicking statistic, kn
√
pÂ is downward biased. This leads to the under-rejections

documented in Table 2.

Finally, the test without Âmix has somewhat higher power than the one with Âmix in

the various configurations of D and kn and for the various alternative scenarios. Neverthe-

less, given the reported nontrivial size distortions of a test without using Âmix above, it is

important for applications to use Âmix in the test.
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5.5 Robustness to weak cross-sectional dependence in idiosyn-

cratic risk

Our test is based on cross-sectional bootstrap which relies on independence of the Brownian

motions driving the idiosyncratic risk in asset prices. In this section we study how sensitive is

the performance of the test to presence of mild cross-sectional dependence in the idiosyncratic

risk. We use the following modified model for this:

dYt = σt

(
βΣ

1/2
f dWt + Σ1/2

ϵ dW̃t

)
, (49)

where W̃t is a p× 1 standard Brownian motion independent from Wt, β = (βj : j = 1, ..., p)

and Σf are exactly as in our original Monte Carlo setup, and Σϵ is a p× p matrix with (i, j)

entry equal to σ2
ϵρ

|i−j| for some parameters ρ ∈ (0, 1) and σ2
ϵ . The parameter σ2

ϵ is chosen

such that the contribution of idiosyncratic noise to total asset variance is around 40%. The

parameter ρ governs the strength of the cross-sectional dependence in the idiosyncratic risk

in asset prices. We experiment with two values for it: ρ = 0.3 and ρ = 0.1.

For brevity, we consider only the configuration kn = 12 and D = 5. When ρ = 0.1, the

results are quantitatively similar to those reported in Tables 1 and 2. When ρ = 0.3, the size

is slightly distorted: the rejection probability is 0.063 if the test uses Âmix, and it is 0.015

if it does not. The power is about 0.5 for both tests under A1 and about 1 under all other

alternatives. Overall, these results show that our test procedure, with centering using Âmix,

is robust to weak form of cross-sectional dependence in the idiosyncratic risk.

6 Empirical application

We use the developed test to study intraday variation in the linear span of systematic risk

exposures of assets. The sample in our study covers the period from January 1, 2015 till

December 31, 2021. On each day, we sample the asset prices every five minutes and we

exclude the first five minutes of each trading day. The cross-section of assets changes over

the calendar years in the sample and at each point in time it consists of the 500 largest stocks

by market capitalization as of the end of the previous calendar year. The data is extracted

from the TAQ database.

Is the span of systematic risk exposures at market open different from that at market

close? To answer this question, we implement our test using return data over two local

windows. One window is the first two hours after market open and the other one is the last

two trading hours prior to market close. To gain power, as in the Monte Carlo, we aggregate
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data over 20 consecutive trading days when implementing the test. The jump truncation

parameters and the determination of the number of factors for each return panel is done

exactly as in the Monte Carlo.
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P-values of Test for Factor Loading Span Equality, Market Open vs Market Close

Figure 3: P-values of test for equal linear spans of factor exposures at market open and
market close. Each period consists of 20 consecutive trading days. The solid horizontal line
is at 0.05.

We report the p-values of the test in Figure 3. As seen from the figure, there is a nontrivial

number of periods with very low p-values. More specifically, in 30 out of a total of 84 periods

in our sample, our test rejects the null hypothesis at the conventional 5% level. That said,

there is a nontrivial number of periods for which there is no evidence for the linear span of

the systematic risk exposures of assets changing from market open to market close. We note

also that, even though there is some evidence for clustering in time of the low p-values, we

can observe low p-values throughout the sample.

We next study the difference in the linear spans of factor exposures at market open and

market close on the days of Federal Open Market Committee (FOMC) announcement. We

consider only the days for which the announcement happens at 2pm Eastern Time.8 We

drop the first ten minutes for the market close window and we do the same for the time

window at market open. In order to gain power, we group the announcement days by year

and we conduct the test on the aggregated by year data. Our test rejects strongly the null

8This includes the majority of the announcements in our sample with the exception of the unscheduled
ones in 2020.
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hypothesis. In particular, at 5% significance level we reject in 3 out of the 7 years in our

sample and this rejection increases to 6 out of 7 years for 10% significance level.

We can contrast the above test results for FOMC days with ones when the test is per-

formed on neighboring days. Figure 4 plots the means and standard deviations of the p-values

of the test across the seven years in our sample, on the days of FOMC announcement ±t

days, for t ∈ {0, 1, 2}. The figure reveals markedly different behavior of the test on and

around FOMC days, with p-values of the test on FOMC days significantly lower than the

ones for days around the FOMC days. In fact, the mean p-values of the test for the neigh-

bouring days of the FOMC announcement are very close to 0.5, which is the expected value

of the test p-value under the null hypothesis.

mean p value

-2 days -1 day FOMC +1 day +2 days
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0.4

0.5
standard dev p value
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0.3

0.4

0.5

Figure 4: P-values of test for equal linear spans of factor exposures at market open and
market close on days around FOMC announcement. In the horizontal axis, “t days” means
the test is conducted for data on the FOMC+t day. The means and standard deviations are
calculated over seven years from 2015 through 2021. The dashed horizontal line is at 0.05.

An interesting question is if the above-documented rejections of the test are due to

different factors being present in the different periods compared in the analysis or if they

are due to changing exposures to common factors over the two periods. Both scenarios seem

economically plausible. Indeed, FOMC announcements trigger a monetary policy shock

while at the same time abrupt changes in aggregate macro variables can lead to shifts in

betas.9 If there is a new factor present only in the hours after the policy announcement, then

one would expect a one day change of factor exposures. That is, if we test equality of factor

exposures in the afternoons of t = 0 against t = −1 or t = 1, then our test should reject in

both cases. On the other hand, if only exposures to factors present throughout the period

around the FOMC announcement change and this change persists at least locally, then we

would expect that a test for equal factor exposures at t = 0 vs. t = 1 will not reject while

9As mentioned in the introduction, prior work has used macro variables to model dynamics of assets’
exposures to systematic risk.

29



mean p value

[-2 vs -1] [-1 vs 0] [0 vs +1][+1 vs +2]
0

0.1

0.2

0.3

0.4

0.5
standard dev p value

[-2 vs -1] [-1 vs 0] [0 vs +1][+1 vs +2]
0

0.1

0.2

0.3

0.4

Figure 5: P-values of test for equal linear spans of factor exposures at market close on days
around FOMC announcement. In the horizontal axis, “[t1 vs t2]” means the test compares
factor exposures at market close on the FOMC+t1 day and the FOMC+t2 day. The means
and standard deviations are calculated over seven years from 2015 through 2021. The dashed
horizontal line is at 0.05.

that for equal factor exposures at t = 0 vs. t = −1 will do.

Figure 5 plots the mean p-values over the sample of tests for equal span of factor exposures

in the afternoons of days around FOMC announcements. The mean p-value of a test for

equal linear span of factor exposures in the afternoons of t = 0 and t = −1 is 0.04 while

the corresponding number for t = 0 vs t = 1 is 0.43. Based on the reasoning above, these

empirical results are more aligned with a shift in the span of factor exposures that persists

(at least over one day) than with the appearance of a new factor on the day of the FOMC

announcement.

7 Conclusion

We propose a nonparametric test for deciding whether the linear spans of factor exposures

of a large cross-section of assets towards latent systematic risk factors at two distinct points

in time differ. The test is derived under a joint in-fill and large cross-sectional asymptotic

setting, implying that both dimensions of the return panels of high-frequency return obser-

vations within local windows of the two points in time are growing. We allow for the two

dimensions of the return panels to grow at different rates and impose weak conditions for the

dynamics of asset prices. The test is based on the projection discrepancy between the factor

loadings estimated separately from the two return panels, which converges asymptotically to

zero under the null hypothesis and diverges otherwise. Suitable centering of the statistic is

performed to eliminate higher-order asymptotic biases and cross-sectional bootstrap method

is developed for feasible implementation. An empirical application of the test reveals that
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the linear spans of factor exposures at market open and market close can differ, and the

evidence for this is particularly strong on days with FOMC announcements.
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