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This Supplement contains additional material. Section S1 provides further examples
of the model framework, Section S2 provides results on measurability, and Section S3
provides further Monte Carlo experiments.

S1. Further examples of model framework

Example 5 (Moment Inequalities). Suppose that θ is known to satisfy the moment in-
equality conditions EP0(m(X�θ)) ≥ 0, where m(X�θ) is a known vector-valued “mo-
ment function” of the data, X , and the parameter, θ. The expectation is taken with
respect to the true unknown data generating process P0 for X . Suppose that (per-
haps just as an approximation) the random vector X has a discrete distribution with
J support points (x1� � � � � xJ), such that P(X = xj) = pj . In this model, the param-
eter μ is equal to a specification of (p1� � � � �pJ), and so the identified set at μ is
Θ(μ) = {θ ∈Θ : ∑J

j=1 m(xj�θ)pj ≥ 0}.
More generally, the identified set is ΘI(P0) ≡ {θ : EP0(m(X�θ)) ≥ 0}. The identified

set that would arise if the data generating process for X equaled P would similarly be
ΘI(P) ≡ {θ : EP(m(X�θ)) ≥ 0}. Suppose that the structure of the moment function m(·)
is such that there is a point identified parameter μ(P) (e.g., moments of functions of
X) and a mapping ΘI(μ) such that ΘI(μ(P)) = {θ : EP(m(X�θ)) ≥ 0} = ΘI(P). Then the
point identified parameter is μ, the identified set at μ is ΘI(μ), and the inverse identified
set is μI(θ)= {μ : θ ∈ΘI(μ)}.

The existence of μ(P) and ΘI(μ) is satisfied if the moment function satisfies the
property that m(X�θ) = ∑J

j=1 mj1(X)mj2(θ). Then μ(P) = {EP(mj1(X))}j and ΘI(μ) =
{θ : ∑J

j=1 μjmj2(θ) ≥ 0}. Many empirically relevant moment inequalities conditions sat-
isfy this property, particularly including various moment inequality conditions based on
linear regression.1 If the moment inequality conditions do not satisfy this property, by
discretization, the approximation in Example 2 can be used.
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Elie Tamer: elietamer@fas.harvard.edu

1See for example Section S3.2 concerning regression with interval data.
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Example 6 (Posterior Probabilities for the Simple Interval Identified Parameter, Contin-
ued). This example continues the discussion in Example 4.

Consider Π(ΘI ⊆ Θ∗|X). This is the posterior probability that all values in the iden-
tified set are contained in Θ∗ or, equivalently, the posterior probability that all val-
ues of the parameter that could have generated the data are contained in Θ∗. Note
that

⋂
θ∈(Θ∗)C μI(θ)

C = ⋂
θ∈(−∞�a)∪(b�∞){μ : μL ≤ θ ≤ μU }C = ⋂

θ∈(−∞�a)∪(b�∞){μ : μL >

θ or μU < θ} = {μ : μL > μU or a ≤ μL ≤ μU ≤ b} ⊃ {μ : a ≤ μL�μU ≤ b}.2 So Π(ΘI ⊆
Θ∗|X) ≡ Π({μ : μL > μU or a ≤ μL ≤ μU ≤ b}|X). In other words, this posterior prob-
ability is the posterior probability of the set of μ such that the identified set evaluated at
μ is either empty or nonempty but contained within Θ∗.

Alternatively, consider Π(ΘI �= ∅|X). Note that
⋃

θ∈ΘμI(θ) = ⋃
θ∈Θ{μ : μL ≤ θ ≤

μU } = {μ : μL ≤ μU }. So Π(ΘI �= ∅|X) ≡ Π({μ : μL ≤ μU }|X). In other words, this pos-
terior probability is the posterior probability of the set of μ such that the identified set
evaluated at μ is nonempty.

First, consider again the large sample behavior of Π(Θ∗ ⊆ΘI |X).
Case 3. Consider the general case when μ|X has a large sample normal approxima-

tion as in Assumption 3. Suppose that μ are the moments of some bivariate distribu-
tion. Suppose that μn(X) is the sample average and that Σ0 is the covariance of the mo-
ments.3 Then, in large samples, by part (iii) of Theorem 1, the posterior probability is
approximately

Π
(
Θ∗ ⊆ΘI |X

) ≈ PN(0�Σ0)

(
(μL�μU) : √n

({μ̃ : μ̃L ≤ a� μ̃U ≥ b} −μn(X)
))

= PN(0�Σ0)

(
μL ≤ √

n
(
a−μnL(X)

)
�μU ≥ √

n
(
b−μnU(X)

))
�

This large sample approximation makes it possible to derive the repeated large sam-
ple behavior. The repeated large sample distribution in some cases is degenerate, in
particular if μ0L < a ≤ b < μ0U or if either μ0L > a or μ0U < b, as considered in pre-
vious cases. So suppose for example that μ0L = a and μ0U > b. Then, under suitable
regularity conditions,

√
n(a − μnL(X)) →d N(0�Σ0�LL) and

√
n(b − μnU(X)) → −∞ al-

most surely. Consequently, in repeated large samples, Π(Θ∗ ⊆ ΘI |X) → Uniform[0�1].
The same result holds when μ0L < a and μ0U = b. Consequently, if μ0L < μ0U , then

2The last equality follows: for the first direction, suppose that μ ∈ {μ : μL > μU or a ≤ μL ≤ μU ≤ b}.
Suppose that μL > μU . Then let θ be any number. Then either θ < μL, or θ ≥ μL (and therefore θ > μU ).
So either θ < μL or θ > μU . So clearly μ ∈ ⋂

θ∈(−∞�a)∪(b�∞){μ : μL > θ or μU < θ}. Alternatively, suppose
that a ≤ μL ≤ μU ≤ b. Let θ ∈ (−∞� a) ∪ (b�∞). If θ ∈ (−∞� a), then μL ≥ a > θ, so μL > θ. Alternatively, if
θ ∈ (b�∞), then μU ≤ b < θ, so μU < θ. So, in either case, μ ∈ ⋂

θ∈(−∞�a)∪(b�∞){μ : μL > θ or μU < θ}. For the
other direction, suppose that μ ∈ ⋂

θ∈(−∞�a)∪(b�∞){μ : μL > θ or μU < θ}. If μL > μU , then obviously μ ∈ {μ :
μL > μU or a ≤ μL ≤ μU ≤ b}, so suppose that μL ≤ μU . Suppose that it did not hold that a ≤ μL ≤ μU ≤ b.
Then either μL < a or μU > b. Suppose that μL < a. First suppose that μL = μU < a. Then let θ = μL. It
must be that μ ∈ {μ : μL > θ or μU < θ}, but this is obviously impossible as then either μL > θ = μL or
μU < θ = μU . So assume that μL < μU and let θ ∈ (μL�min{a�μU }), which exists as long as μL < μU . Since
θ < a, it must be that μ ∈ {μ : μL > θ or μU < θ}. But it cannot be that μL > θ > μL, and also it cannot be
that μU < θ< μU , a contradiction. So it must be that μL ≥ a. Similarly, it must be that μU ≤ b.

3This arises for example if μ is the population mean of a normal distribution or is the population mean
of an unknown distribution with suitably flat Dirichlet process prior.



Supplementary Material Bayesian inference in partially identified models 3

Π(μ0L ⊆ ΘI |X) → Uniform[0�1] and Π(μ0U ⊆ ΘI |X) → Uniform[0�1]. So the bound-
ary points of the identified set are “covered” with the same distribution as a p-value in
repeated large samples, providing frequentist coverage properties. (See also Section 5.)

Now consider the large sample behavior of Π(ΘI ⊆ Θ∗|X).
Case 4. Suppose that ΘI ⊂ (a�b) ⊂ [a�b] and ΘI �= ∅. This implies that a < μ0L ≤

μ0U < b. Then μ0 ∈ int(
⋂

θ∈(Θ∗)C μI(θ)
C), so by part (i) of Theorem 3, Π(ΘI ⊆ Θ∗|X) → 1.

Case 5. Conversely, suppose that ΘI � [a�b] and int(ΘI) �= ∅. This implies that μ0L <

μ0U and either μ0L < a or μ0U > b. Consider the case that μ0L < a; the case that μ0U > b

is similar. Let θ∗ be some point that is in (μ0L�min{a�μ0U }). Note that if a ≤ μ0U , then
this interval is nonempty since μ0L < a. Alternatively, if a > μ0U , then this interval is
nonempty since μ0L < μ0U . Then μ0 ∈ int(μI(θ

∗)) = int({μ : μL ≤ θ∗ ≤ μU }) = {μ : μL <

θ∗ < μU }, since μ0L < θ∗ < μ0U by choice of θ∗. So by part (ii) of Theorem 3, Π(ΘI ⊆
Θ∗|X) → 0.

Case 6. Additionally, in large samples, by part (iii) of Theorem 3, the posterior prob-
ability is approximately Π(ΘI ⊆ Θ∗|X)≈ PN(0�Σ0)(

√
n(

⋂
θ∈(Θ∗)C μI(θ)

C −μn(X))).
Finally, consider the large sample behavior of Π(ΘI �= ∅|X).
Case 7. Suppose that μ0L < μ0U , so that the identified set is nonempty and not a

singleton. Then μ0 ∈ int(
⋃

θ∈ΘμI(θ)). So by part (iv) of Theorem 3, Π(ΘI �= ∅|X) → 1.
Case 8. Conversely, suppose that μ0L > μ0U , so that the identified set is empty. Then

μ0 ∈ ext(
⋃

θ∈ΘμI(θ)). So by part (v) of Theorem 3, Π(ΘI �= ∅|X)→ 0.
Case 9. Finally, suppose that μ0L = μ0U , so that the identified set is a singleton. Then,

in large samples, by part (vi) of Theorem 3,

Π(ΔI �= ∅|X) ≈ PN(0�Σ0)

(
(μL�μU) : √n

({μ̃ : μ̃L ≤ μ̃U } −μn(X)
))

= PN(0�Σ0)

(
μL −μU ≤ √

n
(
μnU(X)−μnL(X)

))
= PN(0�ρ0)

( ˜̃μ≤ √
n
(
μnU(X)−μnL(X)

))
�

where ρ0 = Σ0�LL +Σ0�UU − 2Σ0�UL. Under regularity conditions, in repeated large sam-
ples,

√
n(μnU(X)−μnL(X)) →d N(0�ρ0), so in repeated large samples, Π(ΔI �= ∅|X) →d

Uniform[0�1]. So the posterior probability that the identified set is nonempty provides
a consistent frequentist test of nonemptiness of the identified set.

S2. Measurability

To establish the measurability of the events corresponding to the posterior probability
statements, the following definitions are introduced relative to the measurable sets in-
troduced in Assumption 1.

Definition 5 (Measurable Inverse Included in Sets). The term M1 is a collection of
subsets of Rdδ such that for all Δ∗ ∈ M1,

⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ) is a measurable subset

of M , that is,
⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) ∈ B(M).

These are the subsets such that Π(Δ∗ ⊆ ΔI |X) ≡ Π(μ ∈ ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)|X)

corresponds to a measurable event.
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Definition 6 (Measurable Inverse Included Sets). The term M2 is a collection of sub-
sets of Rdδ such that for all Δ∗ ∈ M2,

⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C is a measurable subset
of M , that is,

⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C ∈ B(M).

These are the subsets such that Π(ΔI ⊆ Δ∗|X) ≡ Π(μ ∈ ⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C |
X) corresponds to a measurable event.

Definition 7 (Measurable Inverse Intersection Sets). The term M3 is a collection of
subsets of Rdδ such that for all Δ∗ ∈ M3,

⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ) is a measurable subset

of M , that is,
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) ∈ B(M).

These are the subsets such that Π(ΔI ∩ Δ∗ �= ∅|X) ≡ Π(μ ∈ ⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)|

X) corresponds to a measurable event.
Lemma 3 establishes a sufficient condition for the second and third parts of As-

sumption 4, and establishes the measurability corresponding to Definitions 5, 6, and 7.
Lemma 3 shows that it is possible to establish measurability without assuming compact-
ness of the parameter space, by using the fact that Euclidean spaces are σ-compact and
somewhat subtle facts about Borel sets in metrizable spaces.

Lemma 3. Suppose that Q(θ�μ) is a continuous function, and that Θ is compact. Suppose
that Δ(·) is a continuous function. Then the following statements hold:

(i) The set ΔI is compact and Δ(Θ) is compact.

(ii) For any Δ∗ ⊆Rdδ ,
⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) is closed.

(iii) For any open Δ∗ ⊆Rdδ ,
⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C is open.

(iv) For any closed Δ∗ ⊆Rdδ ,
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) is closed.

Suppose that Q(θ�μ) is a continuous function, and that Θ is closed. Suppose that Δ(·) is
a continuous function. Then the following statements hold:

(v) It holds that M1 = P(Rdδ).

(vi) It holds that B(Rdδ)⊆ M2.

(vii) It holds that B(Rdδ)⊆ M3.

Proof. For part (i), suppose that {θn}n is a sequence in ΘI that converges to some point
θ∗ ∈ Θ. Since θn ∈ ΘI , Q(θn�μ0) = 0. Since Q is continuous, Q(θ∗�μ0) = 0, so θ∗ ∈ ΘI .
Therefore, ΘI is closed, and therefore compact since Θ is bounded. Consequently, ΔI ≡
Δ(ΘI) is compact. Similarly, since Θ is compact, Δ(Θ) is compact.

For part (ii), suppose that {μn}n is a sequence in
⋃

{θ:Δ(θ)=δ}μI(θ) that converges to
some point μ∗ ∈ M . Since μn ∈ ⋃

{θ:Δ(θ)=δ}μI(θ) there must be θn such that Δ(θn) = δ

and μn ∈ μI(θn). Since Δ is a continuous function and Θ is compact, {θ : Δ(θ) = δ}
is compact. Therefore there is a convergent subsequence θnk → θ∗ ∈ {θ : Δ(θ) = δ}.
Since Q is continuous and Q(θnk�μnk) = 0 along this subsequence, also Q(θ∗�μ∗) = 0.
So μ∗ ∈ μI(θ

∗), and thus μ∗ ∈ ⋃
{θ:Δ(θ)=δ}μI(θ). Therefore

⋃
{θ:Δ(θ)=δ}μI(θ) is closed.
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And since an arbitrary intersection of closed sets is a closed set, for any Δ∗ ⊆ Rdδ ,⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ) is closed.

For part (iv), note by Lemma 2 that
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) =⋃
δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ). Suppose that {μn}n is a sequence in⋃

δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ) that converges to some point μ∗ ∈ M . Since μn ∈⋃

δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ), there must be δn ∈ Δ∗ ∩Δ(Θ) and θn ∈Θ such that Δ(θn) =

δn and μn ∈ μI(θn). Since Θ is compact and since Δ∗ ∩ Δ(Θ) is compact (since it is
the intersection of a closed set and a compact set), there is a convergent subsequence
δnk → δ∗ ∈ Δ∗ ∩ Δ(Θ) and θnk → θ∗ ∈ Θ. Since δnk = Δ(θnk), δ∗ = Δ(θ∗). Since Q is con-
tinuous and Q(θnk�μnk) = 0 along this subsequence, also Q(θ∗�μ∗) = 0. So μ∗ ∈ μI(θ

∗),
and thus μ∗ ∈ ⋃

{θ:Δ(θ)=δ∗} μI(θ). And so μ∗ ∈ ⋃
δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ). Therefore⋃

δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ) is closed.

For part (iii), note by Lemma 2 that (
⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C)C =⋃

δ∈(Δ∗)C
⋃

{θ:Δ(θ)=δ}μI(θ) = ⋃
δ∈(Δ∗)C∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ). By part (iv), this is closed

because (Δ∗)C is closed. So
⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C is open.

For part (v), let Θm = Θ∩B(m), where B(m) is the closed ball of radius m. Since Θ is
closed and B(m) is compact, Θm is compact. Then

⋃
m≥1 Θm = Θ and Θm ⊆ Θm+1, so Θ

is the countable union of increasing compact sets.
Also note that

⋃
m≥1

⋂
δ∈Δ∗

⋃
{θ∈Θm:Δ(θ)=δ}μI(θ) = ⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ). If μ ∈⋃
m≥1

⋂
δ∈Δ∗

⋃
{θ∈Θm:Δ(θ)=δ}μI(θ), then μ ∈ ⋂

δ∈Δ∗
⋃

{θ∈Θm:Δ(θ)=δ}μI(θ) for some m ≥ 1,
and therefore, for that m, for all δ ∈ Δ∗ there is θ ∈ Θm such that Δ(θ) = δ and μ ∈ μI(θ),
so μ ∈ ⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ). Conversely, if μ ∈ ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ), then for all

δ ∈ Δ∗ there is θ such that Δ(θ) = δ and μ ∈ μI(θ). Since it must be that θ ∈ Θm for
all m large enough, then also μ ∈ ⋃

m≥1
⋂

δ∈Δ∗
⋃

{θ∈Θm:Δ(θ)=δ}μI(θ).
The proof of part (ii) also establishes: if Θ is closed but not necessarily com-

pact, for any Δ∗ ⊆Rdδ ,
⋂

δ∈Δ∗
⋃

{θ∈Θm:Δ(θ)=δ}μI(θ) is closed. So
⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) =⋃
m≥1

⋂
δ∈Δ∗

⋃
{θ∈Θm:Δ(θ)=δ}μI(θ) is the countable union of closed sets, so is a Borel set.

For part (vii), let Θm be defined as above and also let Δm = Rdδ ∩ B(m).4

Since Rdδ is closed and B(m) is compact, Δm is compact. Also note that⋃
m≥1

⋃
δ∈Δ∗∩Δm

⋃
{θ∈Θm:Δ(θ)=δ}μI(θ) = ⋃

δ∈Δ∗
⋃

{θ∈Θ:Δ(θ)=δ}μI(θ). If μ ∈⋃
δ∈Δ∗

⋃
{θ∈Θ:Δ(θ)=δ}μI(θ), then there is δ ∈ Δ∗ and θ such that Δ(θ) = δ

and μ ∈ μI(θ). Consequently, for large enough m, δ ∈ Δ∗ ∩ Δm and
θ ∈ Θm, so μ ∈ ⋃

m≥1
⋃

δ∈Δ∗∩Δm

⋃
{θ∈Θm:Δ(θ)=δ}μI(θ). Conversely, if μ ∈⋃

m≥1
⋃

δ∈Δ∗∩Δm

⋃
{θ∈Θm:Δ(θ)=δ}μI(θ), then it is immediate that μ ∈⋃

δ∈Δ∗
⋃

{θ∈Θ:Δ(θ)=δ}μI(θ).
The proof of part (iv) also establishes that if Δ∗ is closed, then⋃

δ∈Δ∗∩Δm

⋃
{θ∈Θm:Δ(θ)=δ}μI(θ) is closed. Consequently,

⋃
δ∈Δ∗

⋃
{θ∈Θ:Δ(θ)=δ}μI(θ) is the

countable union of closed sets, so is a Borel set. Suppose that Δ∗ is either a countable
union or a countable intersection of sets Δ∗

n such that
⋃

δ∈Δ∗
n

⋃
{θ:Δ(θ)=δ}μI(θ) is a Borel

set for each Δ∗
n. In the case that Δ∗ is a countable union, Δ∗ = ⋃

n≥1 Δ
∗
n. Therefore,⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) = ⋃
n≥1

⋃
δ∈Δ∗

n

⋃
{θ:Δ(θ)=δ}μI(θ) is a countable union of Borel

4Note that the dimension of the closed balls in the expressions for Θm and Δm may be different.
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sets, so is a Borel set. In the case that Δ∗ is a countable intersection, Δ∗ = ⋂
n≥1 Δ

∗
n. There-

fore,
⋂

δ∈Δ∗
⋂

{θ:Δ(θ)=δ}μI(θ)
C = ⋂

n≥1
⋂

δ∈Δ∗
n

⋂
{θ:Δ(θ)=δ}μI(θ)

C is the countable intersec-
tion of Borel sets, so is a Borel set. This is because

⋃
δ∈Δ∗

n

⋃
{θ:Δ(θ)=δ}μI(θ) are Borel sets,

so also
⋂

δ∈Δ∗
n

⋂
{θ:Δ(θ)=δ}μI(θ)

C are Borel sets. Consequently,
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) is
a Borel set for any Borel set Δ∗. This is because the Borel sets of a metrizable space are
contained in any collection of sets that has the property that all closed sets are elements
of the collection, and the collection is closed under countable unions and countable
intersections. See for example Aliprantis and Border (2006, Corollary 4.18).

For part (vi), note that (
⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C)C = ⋃

δ∈(Δ∗)C
⋃

{θ:Δ(θ)=δ}μI(θ) is
a Borel set for any Borel set (Δ∗)C , by part (vii). So since the Borel sets are closed under
complements,

⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C is a Borel set for any Borel set Δ∗. �

It is worth noting that there exist other results that establish measurability of random
sets; see for example Molchanov (2006) or Kitagawa (2012). Results similar to Lemma 3
might be possible by establishing these (or similar) conditions on the criterion function
and parameter space imply the sufficient conditions for the other measurability results.

Remark 9 (Restricting Measurability to the Parameter Space Δ(Θ)). Lemma 3 views the
posterior probabilities as defined on Rdδ , rather than restricted to Δ(Θ). This is useful
because it might be difficult to check whether a particular set of interest is a subset of the
parameter space when Δ(·) has a complicated functional form. However, it is relevant to
know how measurability obtains when viewing the posterior probabilities as defined on
Δ(Θ) as a subspace of Rdδ with the subspace topology.

In this analysis, the Borel sets of Δ(Θ) are the Borel sets corresponding to the sub-
space topology on Δ(Θ) viewed as a subspace of a Euclidean space, that is, B(Δ(Θ)) =
{A ∩ Δ(Θ) : A ∈ B(Rdδ)}. Note in particular that if Δ(Θ) ∈ B(Rdδ), then B(Δ(Θ)) = {A ∈
B(Rdδ) : A ⊆ Δ(Θ)} ⊆ B(Rdδ). Therefore, essentially the same measurability results ob-
tain when viewing the posterior probabilities as defined on Δ(Θ).

Remark 10 (Measurability of Q(θ�μ)). Because of the connection (by definition) of the
measurability of a function and the measurability of pre-images of measurable sets, it is
tempting to ask for an analogue of Lemma 3 that assumes only measurability of Q(θ�μ).
Unfortunately, such a result (in general) is not available. Suppose that M = [0�1] and
Θ = [0�1], and let A be any set in Θ × M with the property that A is Borel measurable,
but the projection of A onto M is not Borel measurable. That such sets exist is the same
as the existence of analytic but not Borel measurable sets. Let Q(θ�μ) be 1 minus the
characteristic function for A, which is measurable (by definition). Then consider the set
of μ such that ΘI(μ) ∩Θ �= ∅, that is, the set of μ corresponding to the posterior proba-
bility of a nonempty identified set or, equivalently, quantity (ii) in Definition 3. That set
of μ is the projection of A onto M , which is not Borel measurable by construction. That
suggests an inability to assign a posterior probability to nonemptiness of the identified
set with this Q(θ�μ), despite measurability of Q(θ�μ).
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S3. Further Monte Carlo experiments

S3.1 A simple interval identified parameter

This section reports the results of a Monte Carlo experiment in the context of a simple
interval identified parameter, described in Examples 1, 3, 4, and 6. The data generating
process in this experiment is(

XU

XL

)
∼ Normal

((
μ0U

μ0L

)
�

(
Σ0�UU Σ0�UL

Σ0�UL Σ0�LL

))
�

Consequently, the endpoints of the interval identified set are the first moments of the
distribution of X . Suppose that the data are a random sample of N = 500 observations
from the data generating process. Also suppose that Σ0 is the identity matrix. The econo-
metrician does not know that the data are normally distributed.

There are many approaches that result in a posterior distribution for μ. One pos-
sibility is to specify a normal likelihood, and specify conjugate priors for the unknown
parameters. However, this entails potentially undesirable parametric distributional as-
sumptions. Another possibility is to use the Bayesian bootstrap, which is a nonparamet-
ric approach to Bayesian inference on moments of a distribution that does not require
the specification of a parametric likelihood, and that requires minimal computational
investment. See the discussion after Assumption 3 for references.

As a consequence of considering posterior probabilities over the identified set
(rather than a posterior over the partially identified parameter), the theoretical results
show that both priors will result in the same large sample approximations to the pos-
terior probabilities over the identified set. Consequently, this Monte Carlo experiment
works directly with the large sample approximations based on the Bayesian bootstrap
so that μ|X ∼ Normal(μn�

Σn
n ), where μn is the sample average of the moments corre-

sponding to μ, and Σn is the sample covariance of the moments corresponding to μ. By
the logic of those approximations, those approximations are still functions of the sample
size n: these results can be viewed as using a numerical approximation to the posterior
(which is still a function of sample size n). As expected from the theoretical results, re-
sults not reported here show that almost exactly the same results obtain from the “exact”
posteriors under reasonable prior specifications. The Bayesian bootstrap does not entail
parametric distributional assumptions, so it does not assume that the data generating
process is normal.

The experiment involves multiple different specifications of μ0.
First, suppose that μ0L = 0 and μ0U = 1, so that there is a nonsingleton identified set.

Figure 3(a) displays the values of Π(θ ∈ ΘI |X) for various values of θ and various draws
from the data generating process. Each “curve” corresponds to Π(θ ∈ΘI |X) for a partic-
ular value of X drawn from the data generating process, treating θ as the argument that
is plotted along the horizontal axis. Consequently, the distribution over Π(θ ∈ ΘI |X)

(i.e., the existence of multiple curves in the figure) is the distribution induced by the
data generating process.

As discussed in Example 4, for essentially all draws of X , Π(θ ∈ ΘI |X) ≈ 1 for values
in approximately [0�1�0�9]. So Π(θ ∈ ΘI |X) ≈ 1 on a large subset of the interior of the
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Figure 3. Posterior probabilities that various parameter values belong to the identified set.

identified set. (In larger samples, per the discussion in Example 4, the interval on which
Π(θ ∈ ΘI |X) ≈ 1 would be wider.) Also, for essentially all draws of X , Π(θ ∈ ΘI |X) ≈ 0
for values outside approximately [−0�1�1�1]. (In larger samples, per the discussion in
Example 4, the interval on which Π(θ ∈ ΘI |X) �≈ 0 would be narrower.) And finally, per
the discussion in Example 4, in the neighborhoods of the two points on the boundary
of the identified set, the values of Π(θ ∈ ΘI |X) vary depending on the particular draw
of X . Note that, as discussed throughout this paper, this figure should not be interpreted
to mean that there is a “posterior for” θ that is uniform on (most of) the identified set,
[0�1]. Indeed, if μ0U = 2 instead, then the analogous figure would have values of 1 on
about [0�1�1�9], which would obviously not be a “uniform” posterior on the identified
set. Instead, the interpretation is that there is essentially posterior certainty that all such
points are in the identified set or, equivalently, there is essentially posterior certainty
that all such points could have generated the data.

The circles along the horizontal axis of Figure 3(a) are the endpoints of the 95% cred-
ible set for the identified set, for each draw from the data generating process. The cred-
ible set of a given color corresponds to the same draw of X as the posterior “curve” dis-
played in the same color. In approximately 94�6% of the draws from the data generating
process, the 95% credible set indeed does contain the true identified set, so the credible
set is also a valid frequentist confidence set.

Now, second, suppose that μ0L = 0 and μ0U = 0, so that there is point identifica-
tion; however, this is not known a priori by the econometrician. Figure 3(b) similarly
displays the values of Π(θ ∈ ΘI |X) for various values of θ and various draws from
the data generating process. The posterior Π(θ ∈ ΘI |X) tends to be largest for val-
ues around 0, the singleton value of the identified set. However, unlike in the above
case of a nonsingleton identified set, in general Π(θ ∈ ΘI |X) is bounded away from 1.
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This is consistent with the discussion in Example 4 that concludes that in large sam-
ples, Π(0 ∈ ΘI |X) ≈ PN(0�Σ0)(μL ≤ −√

nμnL(X)�μU ≥ −√
nμnU(X)). A “typical” value

of (
√
nμnL(X)�

√
nμnU(X)) in large samples is (0�0), which would imply that Π(0 ∈

ΘI |X)≈ PN(0�Σ0)(μL ≤ 0�μU ≥ 0). Since Σ0 is the identity matrix, Π(0 ∈ΘI |X) ≈ 1
4 .

The reason for this is that Π(0 ∈ ΘI |X) = Π(μL ≤ 0 ≤ μU |X). If μ0L = 0 = μ0U , then
the posterior for μ does not necessarily satisfy μL ≤ 0 ≤ μU with high probability, since
consistency of the posterior allows that μL > μU with high probability, and also that
0 < μL ≤ μU or μL ≤ μU < 0 with high probability. This is roughly analogous to the
“boundary” problem that would arise in existing frequentist approaches to this model.
But note that, unlike in existing frequentist approaches, it is not necessary to use an ad
hoc rule like a “tolerance parameter.” This is because the Bayesian approach, including
for data such that μnL > μnU , results in a nondegenerate posterior distribution over the
identified set. In particular, if μnL > μnU , then some of the draws of the identified set will
be the “empty” identified set (for draws such that μL > μU ), while others will be a narrow
identified set (for draws such that μL ≤ μU and μL ≈ μU ). Therefore, the Bayesian ap-
proach “automatically” accounts for the fact that μnL > μnU does not necessarily mean
that the true identified set is empty, whereas existing frequentist approaches have to
impose this fact using an ad hoc rule.

Nevertheless, even in large samples there will not be a large amount of posterior
evidence that 0 ∈ ΘI . And since consistency allows that 0 < μL ≤ μU or μL ≤ μU < 0
with high probability, this is true even for Π(0 ∈ ΘI |X�ΘI �= ∅), since Π(0 ∈ ΘI |X�ΘI �=
∅) = Π(0 ∈ ΘI |X�μL ≤ μU). However, this is not a deficiency of this approach. Rather, it
is the logical Bayesian inference based on the structure of the model, as just discussed.

More similarly to before with partial identification, for essentially all draws of X ,
Π(θ ∈ΘI |X)≈ 0 for values outside approximately [−0�2�0�2].

As above, the circles along the horizontal axis of Figure 3(b) are the endpoints of the
95% credible set for the identified set, for each draw from the data generating process.
The credible set of a given color corresponds to the same draw of X as the posterior
“curve” displayed in the same color. In approximately 89�2% of the draws from the data
generating process, the 95% credible set indeed does contain the true identified set, so
the credible set is not quite (but is almost) a valid frequentist confidence set. The lack of
exact frequentist coverage is not surprising because when μ0L = μ0U , the discussion in
Remark 5 does not hold.

In some applications, it may be of interest to know the value(s) of θ that is (are) “most
likely” to be in the identified set, and/or to compare the relative odds that various val-
ues of θ are in the identified set. Figure 4(a) displays the values of the posterior odds

Π(θ∈ΘI |X)
maxθ Π(θ∈ΘI |X) . The relative odds of θ∗

1 and θ∗
2 is the ratio of the displayed posterior odds,

since the denominator cancels. The term Π(θ∈ΘI |X)
maxθ Π(θ∈ΘI |X) behaves more like Π(θ ∈ ΘI |X)

behaved before in the case of a nonsingleton identified set. The posterior odds for val-
ues outside approximately [−0�2�0�2] are approximately 0. And the posterior odds for
essentially a single value of θ in a neighborhood of the true identified set is 1. The value
of θ that has maximal posterior odds depends on the draw of X ; it tends to be approx-
imately μnL+μnU

2 , which is indicated for each draw from the data generating process by
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Figure 4. Other posterior probabilities when μ0L = 0 and μ0U = 0.

a circle that is the same color as the corresponding posterior “curve.” If there is a nons-
ingleton identified set, then maxθ Π(θ ∈ ΘI |X) ≈ 1, so Π(θ∈ΘI |X)

maxθ Π(θ∈ΘI |X) ≈ Π(θ ∈ ΘI |X), so
the posterior odds are essentially the same as Π(θ ∈ΘI |X) in the case of a nonsingleton
identified set.

Particularly in the case that μ0L = 0 = μ0U , it may also be of interest to know the pos-
terior probability that the identified set is nonempty. Figure 4(b) displays the posterior
probability that the identified set is nonempty, for various draws from the data generat-
ing process. The posterior probability in this figure of a given color corresponds to the
same draw of X as the posterior “curves” displayed above of the same color. As expected
from Example 6, these posterior probabilities are distributed approximately according
to Uniform[0�1] in repeated samples. If there is a nonsingleton identified set, then the
posterior probability that the identified set is nonempty is essentially 1 for all draws from
the data generating process, so those posterior probabilities are not displayed.

S3.2 Regression with interval data

This section reports the results of a Monte Carlo experiment in the context of interval
data on the outcome in a linear regression model. The data generating process in this
experiment is

Y =Zβ+U = −1 + 1Z1 + 2Z2 + 3Z3 +U�
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where β= (−1�1�2�3) is the true parameter and⎛
⎜⎜⎜⎝
Z1

Z2

Z3

U

⎞
⎟⎟⎟⎠ ∼ Normal

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1
1
1
0

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

1 0�3 0�3 0
0�3 1 0�3 0
0�3 0�3 1 0
0 0 0 0�1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ �

The observed outcome is the interval [floor(Y)�ceil(Y)]. The data are therefore X =
(floor(Y)�ceil(Y)�Z). The data are a random sample of N = 2000 observations from the
data generating process. See also for example Manski and Tamer (2003).

This model implies the conditional moment inequality conditions E(floor(Y)|Z) ≤
Zβ≤E(ceil(Y)|Z) for all Z, and therefore E(f(Z)(ceil(Y)−Zβ)) ≥ 0 and E(f(Z)(Zβ−
floor(Y))) ≥ 0 for any nonnegative vector-valued function f (·). The Monte Carlo exper-
iment uses the four “instruments” in f (Z) = (1�Z2

1�Z
2
2�Z

2
3). Therefore, there are eight

moment inequality conditions, and the point identified parameter μ is a 19 × 1 vector of
nonredundant moments of various products of floor(Y), ceil(Y), and the components
of Z. The posterior for μ comes from the large sample approximation to the Bayesian
bootstrap, so μ|X ∼ Normal(μn�

Σn
n ), where μn is the sample average of the moments

corresponding to μ, and Σn is the sample covariance of the moments corresponding
to μ. The partially identified parameter of interest is β3, the coefficient on Z3. Conse-
quently, Δ(β) = β3. By numerical approximation, the true identified set for β3 corre-
sponding to these eight moment inequality conditions is ΔI ≈ [1�84�4�16]. The identi-
fied set ΘI(μ) is a convex polytope (i.e., the set of solutions of the moment inequality
conditions). Therefore, computation of ΔI(μ) is a linear programming problem.

Figure 5 displays the values of Π(β3 ∈ ΔI |X) for various values of β3, and vari-
ous draws from the data generating process. As before, each “curve” corresponds to
Π(β3 ∈ ΔI |X) for a particular value of X drawn from the data generating process. For

Figure 5. The values of Π(β3 ∈ ΔI |X).
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essentially all draws of X , Π(β3 ∈ ΔI |X) ≈ 1 for values in approximately [1�9�4�1]. So
Π(β3 ∈ ΔI |X) ≈ 1 on essentially the entirety of the identified set. Also, for essentially
all draws of X , Π(β3 ∈ ΔI |X) ≈ 0 for values outside approximately [1�5�4�5]. In the
neighborhoods of the two points on the boundary of the identified set, the values of
Π(β3 ∈ ΔI |X) vary depending on the particular draw of X .

The circles along the horizontal axis of Figure 5 are the endpoints of the 95% credible
set for the identified set, for each draw from the data generating process. The credible set
of a given color corresponds to the same draw of X as the posterior “curve” displayed in
the same color. In approximately 95�6% of the draws from the data generating process,
the 95% credible set indeed does contain the true identified set, so the credible set is
also a valid frequentist confidence set. Note that this concerns just part of the partially
identified parameter, but nevertheless avoids conservative coverage. Other frequentist
approaches might require conservative projection methods.
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