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Estimating overidentified, nonrecursive, time-varying
coefficients structural vector autoregressions
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This paper provides a general procedure to estimate structural vector autoregres-
sions. The algorithm can be used in constant or time-varying coefficient models,
and in the latter case, the law of motion of the coefficients can be linear or non-
linear. It can deal in a unified way with just-identified (recursive or nonrecursive)
or overidentified systems where identification restrictions are of linear or of non-
linear form. We study the transmission of monetary policy shocks in models with
time-varying and time-invariant parameters.
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1. Introduction

Vector autoregressive (VAR) models are routinely employed to summarize the properties
of the data, and new approaches to the identification of structural shocks have been sug-
gested in the last 10 years (see Canova and De Nicoló (2002), Uhlig (2005), and Lanne and
Lütkepohl (2008)). Constant coefficient structural VAR models may provide misleading
information when the structure is changing over time. Cogley and Sargent (2005) and
Primiceri (2005) were the first to estimate time-varying coefficient (TVC) VAR models,
and Primiceri also provides a structural interpretation of the dynamics using recursive
restrictions on the matrix of impact responses. Following Gambetti, Pappa, and Canova
(2008), the literature nowadays mainly employs sign restrictions to identify structural
shocks in TVC-VARs, and the constraints used are, generally, theory based and robust
to variations in the parameters of the data generating process (DGP); see Canova and
Paustian (2011).
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While sign restrictions offer a simple and intuitive way to impose theoretical con-
straints on the data, they are weak and identify a region of the parameter space. Fur-
thermore, several implementation details are left to the researcher, making comparison
exercises difficult to perform. Because of these features, some investigators still prefer to
use “hard” nonrecursive restrictions, using the terminology of Waggoner and Zha (1999),
even though these constraints are not theoretically abundant. There exist algorithms to
estimate nonrecursive structural models Waggoner and Zha (2003) and to estimate re-
cursive overidentified models (Kociecki, Rubaszek, and Ca’ Zorzi (2013)) identified with
hard restrictions. However, their extension to TVC models is problematic.

TVC-VAR models are typically estimated using a Gibbs sampling routine, where a
state space system is specified, the parameter vector is partitioned into blocks, and
draws for the posterior are obtained by cycling through these blocks. When stochastic
volatility is allowed for, an extended state space representation is used and one or more
parameter blocks are added to the routine. If a recursive contemporaneous structure is
assumed, one can sample the block of contemporaneous coefficients equation by equa-
tion, taking as given draws for the parameters belonging to previous equations. When
the system is nonrecursive, such an approach disregards the cross-equation restrictions.
Thus, the sampling must be done differently. To perform standard calculations, one also
needs to assume that the covariance matrix of the contemporaneous parameters is block
diagonal. When the structural model is overidentified, such an assumption may be im-
plausible. However, relaxing the diagonality assumption complicates the computations,
since the conditional distributions used in the Gibbs sampling do not necessarily have
a known format.

This paper proposes a general framework to estimate a structural VAR (SVAR) that
can handle time-varying coefficient or time-invariant models, identified with hard re-
cursive or nonrecursive restrictions. The procedure can be used in systems that are just-
identified or overidentified, and allows for both linear and nonlinear restrictions on the
parameter space. Nonrecursive structures have been extensively used to accommodate
models that are more complex than those permitted by recursive schemes. As shown,
e.g., by Gordon and Leeper (1994), inference may crucially depend on whether a recur-
sive or a nonrecursive scheme is used. In addition, although just-identified systems are
easier to construct and estimate, overidentified models have a long history in the liter-
ature (see, e.g., Leeper, Sims, and Zha (1996), or Sims and Zha (1998)), and provide a
natural framework to test interesting hypotheses.

The algorithm we design exploits the particular format of the structural model and
follows Primiceri’s (2005) suggestion to use a Metropolis step within a Gibbs sampling
routine to draw the vector of contemporaneous parameters. Because a number of im-
portant identification restrictions and a general law of motions of the coefficients imply
a nonlinear state space representation for the structural model, we then nest our basic
procedure into Geweke and Tanizaki’s (2001) approach to estimate general nonlinear
state space models. Thus, we can deal with many structural systems in a compact and
unified way without having to pay the computational costs of a full nonlinear simulation
methodology.
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We use the methodology to identify a monetary policy shock in an overidentified

TVC system whose structure is similar to that employed by Robertson and Tallman

(2001), Waggoner and Zha (2003), and Sims and Zha (2006). We show that there are time

variations in the variance of the monetary policy shock and in the estimated contem-

poraneous coefficients. These variations translate into important changes in the trans-

mission of monetary policy shocks. We show that time variations in the transmission of

policy shocks are reduced when an alternative law of motion for the standard deviation

of the shocks is used. We also show that when long- and short-run identification restric-

tions are employed, the transmission of monetary policy shocks in the 2000s is affected.

The paper is organized as follows. Section 2 builds up intuition describing the al-

gorithm for a static SVAR with time-invariant coefficients and the identification restric-

tions that are allowed for. Section 3 considers a time-varying coefficients static SVAR.

Section 4 presents the general algorithm applicable to nonrecursive, overidentified TVC-

VAR models featuring stochastic volatility. Section 5 studies the transmission of mone-

tary policy shocks. Section 6 concludes. Appendices and additional material are avail-

able in supplementary files on the journal website, http://qeconomics.org/supp/305/

supplement.pdf and http://qeconomics.org/supp/305/code_and_data.zip.

2. A constant coefficients static SVAR

To build up the intuition, we start from a static SVAR with constant coefficients,

A(α)yt = εt; εt ∼N(0� I)� (1)

where t = 1� � � � �T , yt and εt are M × 1 vectors, A(α) is a nonsingular M ×M matrix that

is assumed to be invertible for almost all α, and α is a vector of structural parameters.

The likelihood function of (1) is

L
(
yT |α)= (2π)−MT/2 det

(
A(α)

)T exp

{
−1

2

T∑
t=1

(
A(α)yt

)′(
A(α)yt

)}
� (2)

Because of det(A(α))T , the Jacobian of the transformation, (2) is nonlinear in α.

Thus, the posterior of α will be nonstandard. Whenever the SVAR is just identified and

the restrictions come in a triangular form, posterior draws for α can be obtained using

draws of the reduced-form covariance matrix Ω(α)−1 = A(α)A(α)′. However, when the

system is overidentified, Ω(α)−1 is restricted and proper posterior inference needs to

take these restrictions into account (see, e.g., Sims and Zha (1998)).

To describe our approach to sample α from the posterior when restrictions are not

necessarily just identifying and recursive, we proceed in two steps. First, we reparame-

terize the model and present a Metropolis algorithm. Second, we show the type of iden-

tification restrictions that are compatible with the setup.

http://qeconomics.org/supp/305/supplement.pdf
http://qeconomics.org/supp/305/code_and_data.zip
http://qeconomics.org/supp/305/supplement.pdf
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2.1 The reparameterization and the algorithm

Vectorizing (1) produces vec(A(α)yt) = vec(εt)= εt . As in Amisano and Giannini (1997),
assume that vec(A(α)) = SAα + sA, where SA and sA are matrices of 1s and 0s. Using
vec(A(α)yt)= (y ′

t ⊗ I)(SAα+ sA), the model can be expressed as

ỹt =Ztα+ εt� (3)

where ỹt ≡ (y ′
t ⊗ I)sA and Zt ≡ −(y ′

t ⊗ I)SA. The likelihood function is

L
(
ỹT |α)= (2π)−MT/2(detD(α)

)T exp

{
−1

2

T∑
t=1

[ỹt −Ztα]′[ỹt −Ztα]
}
� (4)

where D(α) = ∂[vec(A(α)yt)]
∂y ′

t
=Dy +Dz(α), vec(Dy)= sA, and vec(Dz(α)) = SAα.

The reparameterization in (3) makes it easy to design a proposal distribution to be
used in a Metropolis routine. Thus, let

α∗ =
[

T∑
t=1

Z′
tZt

]−1[ T∑
t=1

Z′
t ỹt

]
(5)

and

P∗(α∗)=
[

T∑
t=1

Z′
t(SSE)−1Zt

]−1

� (6)

where SSE =∑T
t=1(ỹt − Ztα

∗)(ỹt − Ztα
∗)′. Set α0 = α∗ and, for i = 1�2� � � � �G, perform

the following steps:

1. Draw a candidate α† ∼ p∗(αi|αi−1) = t(αi−1� rP∗(αi−1)� ν), where r > 0, ν ≥ 4, and t

is a t-distribution.

2. Compute θ = p(α†|ỹT )·p∗(αi|αi−1)

p(αi−1|ỹT )·p∗(αi−1|αi) , where p(·|ỹT ) =L(ỹT |·)[p(·)I(α)] is the posterior

kernel of α† and αi−1, and I(α) is an indicator function.

3. Draw a v ∼U(0�1); set αi = α† if v < θ and αi = αi−1 otherwise.

Note a few facts about the algorithm. First, a t-distribution with a small number of
degrees of freedom is chosen to explore the tails of the posterior; when ν is large the
proposal resembles a normal distribution. Second, and more importantly, the α vec-
tor is jointly sampled and the covariance matrix of P∗(α) is nondiagonal. As we discuss
later, these features distinguish our algorithm from those present in the literature and
provide the flexibility needed to accommodate a variety of structural models. Third, we
need a Metropolis step since (5) and (6) ignore the Jacobian term det(D(α)) appearing
in (4). In general, our proposal will work well whenever D(α) does not strongly affect
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the shape of the posterior, as seems to be the case in the applications discussed in Sec-

tion 5.

Kociecki, Rubaszek, and Ca’ Zorzi (2013) have derived a closed-form solution for the

posterior of α under the assumption that det(D(α)) = 1. It turns out that their poste-

rior collapses to our proposal when the prior for α is diffuse. Baumeister and Hamil-

ton (2013) obtain an analytic expression for the posterior for α under a slightly different

model setup when sign restrictions are used for identification. They show that, asymp-

totically, the posterior for α is the prior restricted to the set of structural models that

diagonalize the covariance matrix Ω(α). The algorithm they employ to draw from the

posterior of α is similar to the one described in this subsection.

2.2 Identification restrictions

The reparameterized model (3) can deal with linear restrictions on α (both of exclusion

and nonexclusion types) and with particular types of nonlinear restrictions on α. We

present a few examples for illustration. We focus on overidentified systems because just-

identified systems only require adjustments of SA and of sA.

2.2.1 Short-run linear restrictions Suppose A(α) features both exclusion and nonex-

clusion linear restrictions:

A(α)=
⎡⎣ 1 0 −α2

α1 1 0
0 α2 1

⎤⎦ �

Then

vec
(
A(α)

)≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α1

0
0
1
α2

−α2

0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 0
0 0
0 1
0 −1
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

SA

[
α1

α2

]
︸ ︷︷ ︸

α

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

�

sA

2.2.2 Short-run nonlinear restrictions Suppose A(α) features exclusion restrictions

and nonlinear constraints:

A(α)=
⎡⎣ 1 0 α3

α1 1 0
0 (α2 + 1)2 1

⎤⎦ � (7)
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Then

vec
(
A(α)

)≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α1

0
0
1

(α2 + 1)2

α3

0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

SA

⎡⎣ α1

(α2 + 1)2

α3

⎤⎦
︸ ︷︷ ︸

f (α)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

�

sA

If we define α̃2 ≡ (α2 + 1)2, f (α) = (α1� α̃2�α3)
′ is still a linear vector-valued function.

Given posterior draws for α̃2, we can recover α2 =√α̃2 − 1, provided α̃2 ≥ 0. Hence, cer-
tain nonlinear restrictions on α can be handled with an additional accept/reject step.
A similar approach can be used in the slightly more general case in which, for example,
f (α) = [α1� (α2 + 2α3)

2�α3]′. Here, we set α̃2 ≡ (α2 + 2α3)
2 ≥ 0, and use draws of α̃2 ≥ 0

and α3 to obtain α2 =√α̃2 − 2α3.
An accept/reject step will not work in the situation

A(α)=
⎡⎣ 1 0 α1α2 − 1
α1 1 0
0 α2 1

⎤⎦ � (8)

Here

vec
(
A(α)

)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α1

0
0
1
α2

α1α2 − 1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

SA

⎡⎣ α1

α2

α1α2 − 1

⎤⎦
︸ ︷︷ ︸

f (α)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

�

sA

Adding an inequality constraint does not help, since the third component of f (α) does
not have independent variations. Still, if we set f̃ (α) = (α1�α2), draws for α1α2 −1 can be
obtained from the draws of (α1�α2). Thus, the posterior of f (α) can be simulated using
the subset of the coefficients with independent variations.

2.2.3 Long-run restrictions Long-run restrictions generally imply nonlinear constraints
on the parameters of a VAR. As the editor has pointed out, these restrictions could
be dealt with in our framework if det(A(α�B)) = det(A(α)), that is, if the Jacobian of
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the transformation is independent of the matrix of reduced-form autoregressive coeffi-
cients B. In this case, draws for B can be made from standard conditional distributions.
In general, however, this is not the case. To see this, consider

A(α)yt = A+yt−1 + εt; εt ∼N(0� I)� (9)

The corresponding VAR is

yt = Byt−1 + [A(α)
]−1

εt� (10)

where B ≡ [A(α)]−1A+, and the (long-run) cumulative matrix is

D ≡ (IM −B)−1[A(α)
]−1

� (11)

Let

A(α)=
⎡⎣ 1 α3 α5

α1 1 α6

α2 α4 1

⎤⎦ � D =
⎡⎣D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤⎦ (12)

and let bij be the typical elements of (IM −B)−1. Then

D = 1
det[A(α)]

⎡⎣b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤⎦×
⎡⎣ 1 − α4α6 α4α5 − α3 α3α6 − α5

α2α6 − α1 1 − α2α5 α1α5 − α6

α1α4 − α2 α2α3 − α4 1 − α1α3

⎤⎦
with det[A(α)] �= 0. Assume, for example, α4 = D21 = D31 = 0 so that there are both short-
and long-run (zero) restrictions. The equality D21 = 0 implies −b21(α4α6 − 1)− b23(α2 −
α1α4) − b22(α1 − α2α6) = 0. Since α4 = 0, we have b21 − b23α2 − b22(α1 − α2α6) = 0.
Similarly, D31 = 0 implies −b31(α4α6 − 1) − b33(α2 − α1α4) − b32(α1 − α2α6) = 0 or
b31 − b33α2 − b32(α1 − α2α6) = 0. Thus, there are nonlinear constraints that draws of bij
and of αi must satisfy, and det(A(α�B)) is generally not independent of B. We discuss in
Appendix F (in the Supplement) how to deal with these types of systems.

2.2.4 Sign restrictions Although sign restrictions are not the focus of this paper, it is
straightforward to show that they can be handled with the algorithm of Section 2.1. Let
A(α) be a general matrix with no exclusion restrictions and inequality constraints on,
say, the first column. Then one draws αs as above and checks whether the first column
satisfies the required constraints. Thus, sign restrictions can be dealt with in the same
accept/reject step used in Section 2.2.2. A mixture of zero and sign restrictions, as those
suggested by Arias, Waggoner, and Rubio Ramírez (2014), can be handled in the same
way.

3. Time-varying coefficients static SVAR

Before we move to the standard TVC-SVAR models used in the literature, it is useful to
study the intermediate step of a static TVC-SVAR. The model is

A(αt)yt = εt� (13)

αt = αt−1 + ut� (14)
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where α0 is given and A(αt) is assumed to be invertible for almost all αt , for all t. To
handle the nonlinear restrictions described in Section 2.2.2, we consider a slightly more
general reparameterization than the one used in Section 2.1. Let αt ∈ X ⊂ Rk, where X

is “sufficiently large”—we need X to have this feature because simulations may proceed
by rejecting draws—and let f :X →Rk′

be continuous, where k′ may be different from k.
Then the model is reparameterized as

ỹt =Ztft + εt; εt ∼N(0� I)� (15)

ft = ft−1 + ζt; ζt ∼ N(0� V )� (16)

where V is a full rank, positive definite matrix, ft ≡ f (αt), ỹt ≡ (y ′
t ⊗ I)sA, and Zt ≡

−(y ′
t ⊗ I)SA. To obtain the joint distribution of f T ≡ {ft}Tt=1 and of V , one can use a

Gibbs sampler as long as p(fT |ỹT � V ) and p(V |ỹT � f T ) are available. Given standard
prior assumptions, p(V |ỹT � f T ) has an inverted Wishart format and it is easy to draw
from.

The conditional posterior p(fT |ỹT � V ) cannot be computed in a standard fashion
since Zt is neither exogenous nor predetermined. Still, it is relatively easy to compute
the kernel of this conditional posterior, following the same steps outlined in Section 2.1.
That is, we compute the likelihood of the reparameterized model, we generate a pro-
posal p(ft+1|ft� V ), and decide whether to accept or reject the draw using a simple
Metropolis–Hastings (MH) rule.

The likelihood for the reparameterized model is

L
(
ỹT |f T �V )= (2π)−MT/2(detD(α)

)T exp

{
−1

2

T∑
t=1

(ỹt −Ztft)
′(ỹt −Ztft)

}
� (17)

where vec(D(αt)) = sA + SAft . Given a prior, the posterior kernel can be easily com-
puted.

The proposal density can be calibrated using Kalman smoothed estimates of ft and
Pt obtained using a version of the model that ignores the Jacobian of the transformation.
Thus, given f0|0 and P0|0, one constructs Kalman filter updated estimates of ft and of its
covariance matrix for each t = 1� � � � �T as

ft|t = ft|t−1 +Kt[ỹt −Ztft|t−1]� (18)

Pt|t = Pt|t−1 − Pt|t−1Z
′
tΩ

−1
t ZtP

′
t|t−1� (19)

where ft|t−1 = ft−1|t−1�Pt|t−1 = Pt−1|t−1 + V �Kt = Pt|t−1Z
′
tΩ

−1
t , and Ωt = Z′

tPt|t−1Zt + I.
Smoothed estimates are f ∗

T |T = fT |T , P∗
T |T = PT |T and

f ∗
t|t+1 = ft|t + Pt|tZ′

tP
−1
t+1|t

(
f ∗
t+1|t+2 −Z′

tft|t
)
� (20)

P∗
t|t+1 = Pt|t − Pt|tZ′

tP
−1
t+1|tZtP

′
t|t−1� t = T − 1� � � � �1� (21)
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3.1 The basic algorithm

Initially set f0|0 and P0|0, and, for i = 1�2� � � � �G, perform the following steps.

Step 1. Given (ỹT �V i−1), compute {f ∗(i−1)
t|t+1 }Tt=1 and {P∗(i−1)

t|t+1 }Tt=1 as in (20) and (21).

1. For t = 1� � � � �T , draw a candidate f †
t ∼ p∗(f it |f i−1

t ) = t(f
∗(i−1)
t|t+1 � rP

∗(i−1)
t|t+1 � ν), r > 0,

ν ≥ 4. Set (f †)T ≡ {f †
t }Tt=1; p∗((f i)T |(f i−1)T ) =∏T

t=1 p∗(f it |f i−1
t ).

2. Compute

θ = p((f †)T |ỹT ) ·p∗((f (i−1))T |(f i)T )
p((f i−1)T |ỹT ) ·p∗((f i)T |(f i−1)T )

�

where p(·|ỹT ) = L(ỹT |(·� V i−1) · [p(·)TI(f )] is the posterior kernel of (f †)T and (f i−1)T ,
and I(f ) is an indicator restricting the prior distribution.

3. Draw v ∼ U(0�1); set (f i)T = (f †)T if v < θ and (f i)T = (f i−1)T otherwise.

Step 2. Given (ỹT � (f i)T ), draw (V i)−1 ∼ p((V i)−1|(f i)T � ỹT )= W (vV �V
−1

), where

vV = T + vV �

V
−1 =

[
V +

T∑
t=1

(
f it − f it−1

)(
f it − f it−1

)′]−1

and vV and V are prior parameters.
Given the structure of the problem, if coefficients are constant, f ∗

t = α∗, P∗
t = P∗, all

t = 1� � � � �T , and the algorithm collapses to the one described in Section 2.1.

4. A standard time-varying coefficients SVAR

Assume that an M × 1 vector of nonstationary variables yt , t = 1� � � � �T , can be repre-
sented with a finite order autoregression of the form

yt = B0�tCt +B1�tyt−1 + · · · +Bp�tyt−p + ut� (22)

where B0�t is a matrix of coefficients on an M̄ × 1 vector of deterministic variables Ct ;
Bj�t , j = 1� � � � �p, are square matrices containing the coefficients on the lags of the en-
dogenous variables, and ut ∼ N(0�Ωt), where Ωt is symmetric, positive definite, and
full rank for every t. For the sake of presentation, we do not include exogenous vari-
ables, but the setup can be easily extended to account for them. Let the structural shocks
be εt ∼ N(0� I) and let ut = A−1

t Σtεt , where At ≡ A(αt) is the contemporaneous coeffi-
cients matrix, αt is a vector of free parameters, and Σt = diag{σm�t} contains the standard
deviations of the structural shocks at t in the main diagonal. The SVAR is

yt =X ′
tBt +A−1

t Σtεt� (23)
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where X ′
t = I ⊗ [C ′

t � y
′
t−1� � � � � y

′
t−p] and Bt = [vec(B0�t)

′�vec(B1�t)
′� � � � �vec(Bp�t)

′]′ are an

M ×K matrix and a K × 1 vector, K = M̄ ×M +pM2. It is typical to assume

Bt = Bt−1 + υt� (24)

αt = αt−1 + ut� (25)

log(σm�t) = log(σm�t−1)+ηm�t � (26)

Letting ηt = [η1t � � � � �ηMt], set

V = Var

⎛⎜⎜⎝
⎡⎢⎢⎣
εt
υt

ut
ηt

⎤⎥⎥⎦
⎞⎟⎟⎠=

⎡⎢⎢⎣
I 0 0 0
0 Q 0 0
0 0 V 0
0 0 0 W

⎤⎥⎥⎦ � (27)

where Q, V , and W are full rank matrices.
Thus, the setup captures time variations in (i) the lag structure (see (24)), (ii) the

contemporaneous reaction parameters (see (25)), and (iii) the structural variances (see
(26)). Common patterns of time variations within blocks are possible if the rank of Q, V ,
or W is reduced. Models with breaks at a specific date can be accommodated by adding
restrictions on (24)–(26); see Canova, Ciccarelli, and Ortega (2012).

4.1 Relaxing standard assumptions

Consider the concentrated model obtained with estimates of the reduced-form VAR co-
efficients B̂t :

A(αt)
(
yt −X ′

t B̂t
)≡ A(αt )̂yt = Σtεt � (28)

Let vec(A(αt)) = SAft + sA, where SA and sA are matrices with 1s and 0s of dimensions
M2 × dim(f (α)) and M2 × 1, respectively, and, as before, ft ≡ f (αt). The concentrated
model can be reparameterized as(̂

y ′
t ⊗ I

)
(SAft + sA)= Σtεt

and the state space is composed of

ỹt =Ztft +Σtεt�

ft = ft−1 + ζt�

and (26), where ỹt ≡ (̂y ′
t ⊗ IM)sA and Zt ≡ −(̂y ′

t ⊗ IM)SA. Given (B̂T �ΣT �V), we need to
draw f T ≡ {ft}Tt=1 from p(fT |ỹT �ΣT �V� B̂T ).

Standard algorithms (see Primiceri (2005)) partition ft into blocks associated with
each equation, say ft = [ft1′� ft2′� � � � � ftM′]′, and assume that these blocks are indepen-
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dent, so that V = diag(V1� � � � �VM). Then

p
(
fT |ỹT �ΣT �V� B̂T

) =
M∏

m=2

p
((
fm
)T |(fm−1)T � ỹT �ΣT �V� B̂T

)
(29)

×p
((
f 1)T |ỹT �ΣT �V� B̂T

)
�

Thus, for each equation m, the coefficients in equation m − j, j ≥ 1, are treated as pre-
determined and changes in coefficients across equations are uncorrelated. The setup
is convenient because equation by equation estimation is possible. Since the factoriza-
tion does not necessarily have an economic interpretation, it may make sense to assume
that the innovations in the ft blocks are uncorrelated. However, if we insist that each el-
ement of αt has some economic meaning, the diagonality of V is no longer plausible.
For example, if αt contains policy and nonpolicy parameters, it will be hard to assume
that nonpolicy parameters are invariant to changes in the policy parameters (see, e.g.,
Lakdawala (2012)).

The algorithm described in the previous section relaxes both assumptions, that is,
the vector ft is jointly drawn and V is not necessarily block diagonal. This modification
allows us to deal with recursive, nonrecursive, just-identified, or overidentified struc-
tural models in a unified framework. There are, however, computational costs, since
systemwide estimation methods are now needed.

4.2 The general algorithm

Set initial values ((B0)T � (f 0)T � (s0)T � (Σ0)T �V0), where s is a J-dimensional vector of
discrete indicator variables described below. Then, for i = 1� � � � �G, we have the follow-
ing steps.

1. Draw (Bi)T from p((Bi)T |ỹT � (f i−1)T � (si−1)T � (Σi−1)T �V i−1) · IB(BT
i ), where IB(·)

truncates the posterior to insure stationarity of impulse responses. The variable p(·) is
normal and can be computed using Kalman filter recursions and a multi-move Carter
and Kohn (1994) or a single-move Koop and Potter (2011) strategy.

2. Draw (f i)T from p((f i)T |ỹT � (si−1)T � (Σi−1)T �V i−1� (Bi)T ) using the approach de-
scribed in Section 3.1.

3. Given (̂yT � (Bi)T � (f i)T ), the model is linear and composed of

Â(αt )̂yt ≡ y∗∗
t = Σtεt (30)

and (26), where vec(Â(αt)) = SAf
i
t + sA, and Â(αt) is the matrix of the contemporane-

ous coefficients matrix evaluated at the current draw (f i)T . For the mth equation of the
model, we have

y∗
m�t = log

[(
y∗∗
m�t

)2 + c
]≈ 2 log(σm�t)+ logε2

m�t� (31)

where c is a small constant. Since εm�t is Gaussian, logε2
m�t is log(χ2) distributed and can

be approximated by a mixture of normals. Conditional on st , the indicator for the mix-
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ture of normals, the model is linear and Gaussian. Thus, as in Del Negro and Primiceri
(2013), we proceed as follows:

(a) Given ((y∗∗)T � (Bi)T � (f i)T � (Σi−1)T ), draw (si)T and compute

P
(
sm�t = j|y∗∗

m�t� log(σm�t)
)∝ qj ×φ

(
y∗∗
m�t − 2 log(σm�t)−ηj + 1�2704

γj

)
�

where j = 1� � � � � J, φ(x) is the normal density, qj is a set of weights, x is the standardized
error term logε2

m�t , and ηj and γj are the mean and the standard deviation of the jth
mixture. Draw u ∼ U(0�1). Set sm�t = j if P(sm�t ≤ j − 1|y∗∗

m�t� log(σm�t)) < u ≤ P(sm�t ≤
j|y∗∗

m�t� log(σm�t)).

(b) Given (ỹT � (Bi)T � (f i)T � (si)T ), use standard Kalman smoother recursions to draw
{Σt}Tt=1 from (22)–(27), where sT is obtained in step (a). To ensure independence of the
structural variances, each σm�t is sampled assuming a diagonal W .

4. Draw V i from p(V i|ỹT � (f i)T � (si)T � (Σi)T � (Bi)T ). The variable V i is sampled as-
suming that each block follows an independent inverted Wishart distribution.

Then use (Bi)T � (f i)T � (si)T � (Σi)T �V i as initial values and repeat the sampling.

4.3 Extensions

In the setup used so far, we are constrained about the identification restrictions we can
employ; for example, as noted in Section 2.2.3, long-run restrictions produce a nonlinear
model for αt and Bt . Recent identification procedures that restrict certain medium-term
multipliers (for example, the maximum effect of a monetary shock on output occurs x

months after the disturbances) or the variance decomposition (as it is done in the news
shock literature (see, e.g., Barsky and Sims (2011))) also generate a nonlinear model for
(αt�Bt). In addition, while it is standard to use a log-linear setup for the law of motion
of the volatilities, one may want to consider generalized autoregressive conditional het-
eroscedasticity (GARCH) or Markov switching specifications, which also generate non-
linear or nonnormal laws of motion of the coefficients.

In all these cases, the sequential Monte Carlo methods discussed in Creel (2012) and
Herbst and Schorfheide (2014) are the natural candidates to estimate the structural non-
linear model. These methods, however, are computationally intensive and there are still
a number of theoretical and practical issues that need to be resolved. Thus, an inter-
mediate approach, which still allows us to deal with all these cases, but is much less
computationally demanding, could be of use.

We describe in Appendices E and F how the setup of Section 4.2 needs to be modi-
fied to deal with cases where the law of motion of the coefficients or the identification
restrictions come in a nonlinear form. Basically, we nest our procedure into Geweke and
Tanizaki’s (2001) algorithm for estimating nonlinear, non-Gaussian state spaces modi-
fied to account for the fact that we are dealing with models with time-varying parame-
ters.
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5. The transmission of monetary policy shocks

We employ our procedure to study the transmission of monetary policy shocks in an
overidentified structural TVC-VAR when short-run zero restrictions are used. We are in-
terested in knowing whether the propagation of policy shocks has changed over time
and in what way. To robustify inference, we study how our conclusions change when the
law of motion of the standard deviation of the shocks is altered and when mixed long-
and short-run restrictions are used to identify policy shocks. We also evaluate the merits
of different methods to draw the autoregressive parameters of the model.

5.1 The SVAR model

The vector of endogenous variables is yt = (GDPt � Pt�Ut�Rt�Mt�Pcomt )
′, where GDPt

is a measure of aggregate output, Pt is a measure of aggregate prices, Ut is the unem-
ployment rate, Rt is the nominal interest rate, Mt is a monetary aggregate, and Pcomt

represents a commodity price index. The structure of A(αt) is as in Table 1, where X

indicates a nonzero coefficient.
The structural model is identified via exclusion restrictions as follows:

1. Information equation. Commodity prices (Pcomt ) convey information about re-
cent developments in the economy. Therefore, they react contemporaneously to all
structural shocks.

2. Money demand equation. Within the period money balances are a function of the
structural shocks to core macroeconomic variables (Rt�GDPt � Pt).

3. Monetary policy equation. The interest rate (Rt) is used as an instrument for con-
trolling the money supply (Mt). No other variable contemporaneously affects this equa-
tion.

4. Nonpolicy block. Following Bernanke and Blinder (1992), the nonpolicy variables
(GDPt � Pt�Ut) react to policy, money, or informational changes only with a delay. This
setup can be formalized by assuming that the private sector uses only lagged values of
these variables as states or that private decisions have to be taken before the current
values of these variables are known. The relationship between the variables in the block
is left unmodeled and, for simplicity, a recursive structure is assumed.

Table 1. Identification restrictions.

Reduced form\Structural GDPt Pt Ut Rt Mt Pcomt

Nonpolicy 1 1 0 0 0 0 0
Nonpolicy 2 X 1 0 0 0 0
Nonpolicy 3 X X 1 0 0 0
Monetary policy 0 0 0 1 X 0
Money demand X X 0 X 1 0
Information X X X X X 1
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In this setup, it is easy to understand why independence in coefficients of different
equations is unappealing: changes in policy and nonpolicy coefficients are likely to be
correlated. Let εt = [ε1

t � ε
2
t � ε

3
t � ε

mp
t � εmd

t � εit]′ be the vector of structural innovations. The
structural model is⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
α1�t 1 0 0 0 0
α2�t α5�t 1 0 0 0

0 0 0 1 α11�t 0
α3�t α6�t 0 α9�t 1 0
α4�t α7�t α8 α10�t α12�t 1

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A(αt)

×

⎡⎢⎢⎢⎢⎢⎢⎣

GDPt

Pt

Ut

Rt

Mt

Pcomt

⎤⎥⎥⎥⎥⎥⎥⎦
(32)

=A+
t (L)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

GDPt−1

Pt−1

Ut−1

Rt−1

Mt−1

Pcomt−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+Σt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1
t

ε2
t

ε3
t

ε
mp
t

εmd
t

εit

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

where A+
t (L) is a function of A(αt) and Bt , and we normalize the main diagonal of A(αt)

so that the left-hand side of each equation corresponds to the dependent variable. Fi-
nally,

Σt =

⎡⎢⎢⎢⎢⎢⎢⎣

σ1
t 0 0 0 0 0

0 σ2
t 0 0 0 0

0 0 σ3
t 0 0 0

0 0 0 σ
mp
t 0 0

0 0 0 0 σmd
t 0

0 0 0 0 0 σi
t

⎤⎥⎥⎥⎥⎥⎥⎦
is the matrix of standard deviations of the structural shocks.

The structural model (32) is nonrecursive and overidentified by three restrictions.
Overidentification obtains because the policy equation is different from the Taylor rule
generally employed in the literature. It is easy to check (see Appendix A) that the (con-
stant coefficient version of the) system is globally identified and, therefore, is suitable
for interesting policy experiments.

5.2 The prior and computation details

The VAR is estimated with two lags; this is what the Bayes information criterion (BIC)
criteria selects for the constant coefficient version of the model. The priors are proper,
conjugate for computational convenience, and given by B

prior
0 ∼ N(B�4 · VB), Qprior ∼

IW(k2
Q · VB� (1 + K)), αprior

0 ∼ N(α�diag(abs(α))), Sprior ∼ IW(k2
S · diag(abs(α))� (1 +

dimα)), log(σ0)
prior ∼N(σ �10 · IM), and W

prior
i ∼ IW(k2

W �1 + 1), i = 1� � � � �M .
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To calibrate the hyperparameters, we estimate a constant coefficient version of the
model using the first 40 observations as a training sample: B and VB are estimated with
ordinary least squares (OLS), and α and σ are estimated with maximum likelihood us-
ing 100 different starting points and the constant coefficient version of the model. We
set k2

Q = 0�5 × 10−4, k2
S = 1 × 10−3, k2

W = 1 × 10−4, and J = 7. We generate 150,000 draws,
discard the first 100,000, and use 1 out of every 100 of the remaining for inference. The
results we present are independent of whether thinning is performed. Convergence was
checked using standard statistics. Draws for Bt are discarded if the stability condition
fails. The function I(f ) used to eliminate outlier draws is uniform over the interval
(−20�20). In our application, all draws were inside the bounds. The acceptance rate for
the Metropolis step is 35�6%. Since the structural model has M = 6 and dim(αt) = 12, SA
and sA are written

SA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×dim(α)

[1 01×(dim(α)−1) ]
[ 01×(2−1) 1 01×(dim(α)−2) ]

01×dim(α)

[ 01×(3−1) 1 01×(dim(α)−3) ]
[ 01×(4−1) 1 01×(dim(α)−4) ]

02×dim(α)

[ 01×(5−1) 1 01×(dim(α)−5) ]
01×dim(α)

[ 01×(6−1) 1 01×(dim(α)−6) ]
[ 01×(7−1) 1 01×(dim(α)−7) ]

05×dim(α)

[ 01×(8−1) 1 01×(dim(α)−8) ]
04×dim(α)

[ 01×(9−1) 1 01×(dim(α)−9) ]
[ 01×(10−1) 1 01×(dim(α)−10) ]

03×dim(α)

[ 01×(11−1) 1 01×(dim(α)−11) ]
01×dim(α)

[ 01×(12−1) 1 01×(dim(α)−12) ]
06×dim(α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

sA = [e′
1� e

′
2� e

′
3� e

′
4� e

′
5� e

′
6
]′
�

where ei are vectors in R
M with

ei = [ei�j]Mj=1 such that ei�j =
{

1� j = i,
0� j �= i.

5.3 The data

The data come from the International Financial Statistics (IFS) data base at the Interna-
tional Monetary Fund and from the Federal Reserve Board (www.imfstatistics.org/imf/
about.asp and www.federalreserve.gov/econresdata/releases/statisticsdata.htm, res-

http://www.imfstatistics.org/imf/about.asp
http://www.imfstatistics.org/imf/about.asp
http://www.federalreserve.gov/econresdata/releases/statisticsdata.htm
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pectively). The sample is 1959:I–2005:IV. We stop at this date to avoid the last financial
crisis and to compare our results to those of Sims and Zha (2006), who use a (restricted)
Markov switching model over the same sample. The gross domestic product (GDP) de-
flator, the unemployment rate, the aggregate gross domestic product index (volume,
base 2005 = 100), the commodity prices index, for money we use the M2 series from IFS;
the Federal Funds rate is from the Fed. All the variables are expressed in year-to-year
rate changes (i.e., y∗

t = log(yt)− log(yt−4)) , except for the Federal Funds and the unem-
ployment rate, and are standardized (i.e., we use (y∗

t − E(y∗
t ))/ std(y∗

t )) to have all the
variables on the same scale.

5.4 Comparing routines for drawing BT

To draw BT , one can employ Carter and Kohn’s (1994) multi-move strategy where the
components of BT are jointly sampled from normal distributions having moments cen-
tered at Kalman smoother estimates. Koop and Potter (2011) argued that multi-move
algorithms are inefficient when one requires stationarity of the impulse responses at
each t, especially if the VAR is of medium/large dimension. To avoid nonexplosive im-
pulse responses, it is common since Cogley and Sargent (2005) to assume that all the
eigenvalues of the companion form matrix associated with Bt lie within the unit circle
for t = 1� � � � �T . When the multi-move logic is used, if one element of the sequences
violates the stationarity restrictions, the entire sequence is discarded, making the algo-
rithm inefficient. As an alternative, Koop and Potter suggest to evaluate the elements of
the BT sequence separately using a single-move algorithm and an accept/reject step. We
describe how the algorithm works in our structural system in Appendix B.

To deal with the stationarity issue, one could also consider the shrinkage approach
of Canova and Ciccarelli (2009). The approach was originally designed to deal with the
curse of dimensionality in large scale panel VAR models, but can also be used in our con-
text. When Bt is of large dimension and each of the components is an independent ran-
dom walk, the probability that explosive draws for at least one coefficient are obtained
is very large. Canova and Ciccarelli make Bt a function of a much lower dimensional
vector of factors θt , which independently move as a random walk, and this can reduce
the inefficiency of the algorithm. We describe how this algorithm works in Appendices C
and D.

We compare these three approaches to sample BT in our medium scale SVAR model
to better understand the pros and cons of each routine. The standard multi-move rou-
tine is very inefficient if variables are nonstandardized. In fact, the acceptance rate is
only 0�46% when year-on-year growth rates are used and is 0�60% when quarterly growth
rates are employed. As a referee suggested, the slightly better results obtained with quar-
terly growth rates is due to the fact that, with this transformation, the data display lower
persistence. When the data are standardized, acceptance rates improve with both data
transformations (now they are 10�2% and 11�5%, respectively). Standardization reduces
inefficiencies because not all variables necessarily have the same units.

In the single-move algorithm, the average acceptance rates for BT when the data
are standardized are 97% and 91% for year-on-year and quarterly growth rates, respec-
tively. However, the higher acceptance rates are more than compensated by the higher
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correlations of the draws (serial correlation goes from 0�10 to 0�92–0�94 with the cur-
rent procedure). Furthermore, there are important computational costs: we need about
12 hours to estimate the model with the multi-move routine, but about 96 hours with the
single-move routine. Note that the precision of the two algorithms is roughly the same.

Apart from the constants, the vector Bt has 72 components. To maintain as much
as possible the covariance structure of the data unchanged, we estimate the shrinkage
model with 15 factors: one common factor, one factor for each equation (6), one factor
for each lag (2), and one factor for each variable (6),

Bt =Ξθt + υt� υt ∼N(0� I)�

θt = θt−1 + ρt� ρt ∼N(0�Q)�

where Ξ is a 72 × 15 matrix loading the factors on the required elements of the Bt vector.
When Ξ is composed of 0s and 1s, we needed about 10 hours to estimate the model,
the acceptance rate is 78% when the data are standardized, and the serial correlation of
the draws is 0�55. When the elements of Ξ are also estimated, the computational time
increases to about 24 hours, the acceptance rate for BT drops to 24%, and the first order
serial correlation of the draws is 0�43, when data are standardized.

In sum, both the multi-move and the shrinkage algorithms have reasonable compu-
tational costs and have comparable efficiency properties. The single-move algorithm is
computationally much more demanding—we need to compute a constant of integra-
tion at each t and at each step of the Gibbs sampler—and its efficiency seems lower.

In the next subsections, we comment on the results obtained using standardized
year-on-year growth rates and the multi-move algorithm.

5.5 Time variations in structural parameters

We first describe the time variations that our model delivers. In the left panel of Figure 1,
we report the highest 68% posterior tunnel for the variability of the monetary policy
shock, and in Figure 2, we report the highest 68% posterior tunnel for the nonzero con-
temporaneous structural parameters αt .

Figure 1. Median and posterior 68% tunnels: volatility of monetary policy shock. Left panel:
stochastic volatility model; right panel: GARCH(1�1) model.
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Figure 2. Estimates of αt .

There are significant changes in the standard deviation of the policy shocks and a
large swing in the late 1970s–early 1980s is visible. Given the identification restrictions,
this increase in volatility must be attributed to some unusual and unexpected policy
action that made the typical relationship between interest rates and money growth dif-
ferent. This pattern is consistent with the arguments of Strongin (1995) and Bernanke
and Mihov (1998), who claim that monetary policy in the 1980s was run differently, and
agrees with the results of Sims and Zha (2006).

A few of the nonpolicy parameters [α1�t � α2�t � α5�t] exhibit considerable time varia-
tions that are a posteriori significant. Note that it is not only the magnitude that changes;
the sign of the posterior tunnel is also affected. Also worth noting is the fact that both the
GDP coefficient in the inflation equation (α1�t ) and the inflation coefficient in the unem-
ployment equation (α5�t ) change sign, suggesting a generic sign switch in the slope of the
Phillips curve.

The parameter α11�t , which controls the reaction of the nominal interest rates to
money growth, also displays considerable changes. In particular, while in the 1970s and
the first half of the 1980s the coefficient was generally small and at times insignificant, it
became much stronger in the rest of the sample (1986–2005). Interestingly, this time pe-
riod coincides with the Greenspan era, where official statements claimed that monetary
policy was conducted using the interest rate as an instrument and money aggregates
were endogenous.

The coefficients of the money demand equation, [α3�t � α6�t � α9�t]′ are also unstable.
For example, the elasticity of money demand to the nominal interest rate (α9�t ) is nega-
tive at the beginning of the sample and turns positive since the middle of the 1970s, with
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some episodes when it is not significantly different from zero. The elasticity of money
(growth) demand to inflation is low and sometimes insignificant, but increasing in the
last decade. Thus, homogeneity of degree 1 of money in prices does not hold for a large
portion of our sample. Since time variations in elements of αt are correlated (see, in par-
ticular, α5�t and α8�t or α1t and α11t ), our setup captures the idea that policy and private
sector parameters move together.

Thus, in agreement with the dynamic stochastic general equilibrium (DSGE) evi-
dence of Justiniano and Primiceri (2008) and Canova and Ferroni (2012), time variations
appear in the variance of the monetary policy shock, and in contemporaneous policy
and nonpolicy coefficients.

5.6 The transmission of monetary policy shocks

We next study how the observed time variations affect the transmission of monetary
policy shocks. Since σ

mp
t is time-varying, we normalize the impulse to be 1 at all t. Thus,

the time variations we describe are due to changes in the propagation but not in the
size of the shocks. We compute responses as the difference between two conditional
projections: one with the structural shock set to 1 and one with the structural shock set
to 0.

In theory, a surprise increase in the monetary policy instrument, should make
money growth, output growth, and inflation fall, while unemployment should go up.
Such a pattern is present in the early part of the sample, but disappears as time goes by.
As Figure 3 indicates, monetary policy shocks have the largest effects in 1981; the pattern
is similar but weaker in 1975 and 1990. In 2005, responses are somewhat perverse (infla-
tion and output growth significantly increase and unemployment significantly falls after
an interest rate increase). Differences in the responses of output and unemployment be-
tween, say, 1981 and 2005 are a posteriori significant. Thus, the ability of monetary pol-
icy to affect the real economy has considerably changed over time and policy surprises
are interpreted in different ways across decades.

Figure 3. Dynamics following a monetary policy shock: various dates.
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Figure 4. Long-run share of the forecast error variance due to monetary policy shock: various
dates.

Despite these noticeable variations, the proportion of the forecast error variance of
output, prices, and unemployment due to policy shocks is consistently small (see Fig-
ure 4). Monetary policy shocks explain 10% of the forecast error variance of inflation at
all dates and about 15–20% of the variability of output growth and the unemployment
rate, with a maximum of about 25% in the early 1980s. Thus, as in Uhlig (2005) or Sims
and Zha (2006), monetary policy has modest real effects.

These results are very much in line with those of Gambetti, Pappa, and Canova
(2008), even though they use sign restrictions to extract structural shocks, and with
those of Boivin and Giannoni (2006), who use subsample analysis to make their points.
They differ somewhat from those reported in Sims and Zha (2006), primarily because
they do not allow for time variations in the instantaneous coefficients, and from those
in Fernández Villaverde, Guerron Quintana, and Rubio Ramírez (2010), who allow for
stochastic volatility and time variations only in the coefficients of the policy rule.

5.7 A time-invariant overidentified model

We compare these results with those obtained in a constant coefficient overidentified
structural model. Given that time variations seem relevant, we would like to know how
the interpretation of the evidence would change if one estimates a model with constant
coefficients.

To illustrate the differences, we report in Figure 5 the responses of the variables to a
unexpected monetary policy impulse at four dates (1975, 1981, 1990, 2005) in the two
systems. Clearly, there is more uncertainty regarding the liquidity effect in the time-
varying SVAR model at some dates. Furthermore, the responses of output growth, in-
flation, and unemployment in the constant coefficients model are different and the dy-
namics prevailing in the 1970s seem to dominate.
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Figure 5. Time-varying and time-invariant responses.

Overall, differences between TVC and time-invariant models are generally smaller
than previously reported. The reason is that we standardize the data prior to estimation.
If this transformation is not performed, differences in the two systems become substan-
tially larger.

5.8 Altering the law of motion of the volatility

To check whether our results depend on the specification of the law of motion of the
volatilities, we now assume that instead of (26) we use

σ2
m�t = (1 − δ)+ δσ2

m�t−1 + δ
(
y∗∗
m�t−1

)2 +ηm�t � (33)

Since with this GARCH(1�1), the resulting model is nonlinear, we calibrate the proposal
using an extended Kalman filter algorithm and a linearized version of the model. Details
on how the algorithm is modified in this case are in Appendix E. For comparison pur-
poses, we report the time profile of the posterior distribution of the standard deviation
of the monetary policy shock (in the second panel of Figure 1) and the responses to a
monetary policy shock in 1975:1, 1981:1, 1990:1, and 2005:1 (see Figure 6).

A few interesting conclusions emerge from the figures. The qualitative features of the
results are broadly unaltered. For example, there is a peak in the volatility of the mone-
tary policy shock in the late 1970s–early 1980s and a standard prize puzzle in response
to a policy shock. Quantitatively, however, important changes occur. The volatility of the
monetary policy shock is estimated to be generally larger and the peak in the early 1980s
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Figure 6. Transmission of monetary policy shocks: GARCH(1�1) specification.

is 50% taller. Because a larger portion of the dynamics of the endogenous variables is
now captured by volatility changes, the responses to policy shocks are generally smaller
and less significant than in the baseline case. For instance, contrary to what we had in
Figure 3, the responses of prices and money are never significant, and those of the un-
employment rate are significant only in the very short run. In addition, time variations
in the transmission of monetary policy shocks are smaller: if we exclude the medium
term response of the unemployment rate, the responses of the other five variables are
roughly constant at all horizons. Thus, inference about the effects of policy shocks and
the changes in the transmission mechanism may depend on nuisance features.

5.9 Using short- and long-run restrictions

As a final robustness check, together with the restrictions we have imposed in Table 1, we
also impose the restriction that monetary policy shocks have no long-run effect on out-
put. We do not restrict the long-run behavior of the unemployment rate since there are
theories that allow long-run movements of the unemployment rate in response to mon-
etary policy shocks; see, e.g., Benhabib and Farmer (2000). Also in this case, the model
becomes nonlinear. Details on the modifications needed in the sampling algorithm are
in Appendix F.

Figure 7 presents the responses of the variables to a monetary policy shock. The ba-
sic qualitative features of the responses are unchanged: it takes some time to output and
the unemployment rate to react; prices are sluggish in response to a surprise increase in
interest rates. Quantitatively some differences emerge. In 2005, the response of output
is perverse: output increases in response to a monetary policy contraction for at least
20 quarters. In 1975, the response of prices is much more persistent than without long-
run restrictions and the peak response of the unemployment rate is stronger. In general,
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Figure 7. Transmission of monetary policy shocks: long-run restrictions.

when long-run restrictions are imposed, time variations in the transmission of mone-
tary policy shocks are increased.

6. Conclusions

We propose a unified framework to estimate structural VARs. The methodology can han-
dle time-varying coefficients or time-invariant models identified with recursive or non-
recursive constraints that can be linear or nonlinear and that can produce just identi-
fied or overidentified systems. Our algorithm adds a Metropolis step to a standard Gibbs
sampling routine. With minor modifications, it can also deal with nonlinear structural
state space systems. Thus, we greatly expand the set of structural VARs that researchers
can deal with within the same estimation framework.

We apply the methodology to study the transmission of monetary policy shocks in a
nonrecursive overidentified TVC model similar to that used by Robertson and Tallman
(2001) and Waggoner and Zha (2003) with fixed coefficients. We examine the merits of
multi-move versus single-move routines and find that once data is demeaned and ex-
pressed in the same scale, the computational costs of using a single-move routine are
larger than the efficiency gains. We also show that there are time variations in the vari-
ance of the monetary policy shock and in the estimated contemporaneous coefficients.
These variations translate into significant changes in the transmission of monetary pol-
icy shocks. The time variations are considerably reduced when an alternative law of
motion for the standard deviation of the shocks is used. We show that when a mixture
of long- and short-run restrictions are employed, the transmission of monetary policy
shocks in the 2000s is affected.

The range of potential applications of the methodology is large. For example, one
could use the same setup to identify fiscal shocks or externally generated shocks in mod-
els that theory tightly parameterizes. One could also use the same methodology to iden-
tify shocks imposing magnitude restrictions on impulse responses as in Rubio Ramírez,
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Waggoner, and Zha (2010) or variance decomposition restrictions as in Barsky and Sims
(2011). The estimation complexity is important but not overwhelming and all the com-
putations can be performed on a standard personal computer with sufficient random
access memory.
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