
Supplemental Appendix

B.1. Full Implementation. In this section, we study full implementation. We show

that both strict sequential obedience and its reversed version are necessary and jointly

sufficient for full implementation. We also show that, under the monotonicity assumption

on V , the optimal information design problem under S-implementation is equivalent to

that under full implementation.

To proceed, we add a symmetric dominance state assumption that there exists θ ∈ Θ

such that di(1−i, θ) < 0 for all i ∈ I. We now allow an alternative interpretation of an

ordered outcome as describing switches from action 1 to action 0. Thus, for a sequence

γ0 ∈ Γ, write a0(γ0) = 1− a(γ0) ∈ A for the action profile such that player i plays action

0 if and only if i is listed in γ0 and a0−i(γ
0) ∈ A−i for the action profile such that only

players before i in γ0 play action 0. Thus an ordered outcome ν0
Γ ∈ ∆(Γ × Θ) reverse

induces ν ∈ ∆(A×Θ) if

ν(a, θ) =
∑

γ0 : a0(γ0)=a

ν0
Γ(γ

0, θ)

for all (a, θ) ∈ A×Θ.

Definition B.1. An ordered outcome ν0
Γ ∈ ∆(Γ×Θ) satisfies reverse sequential obedience

(resp. strict reverse sequential obedience) if∑
γ0∈Γi,θ∈Θ

ν0
Γ(γ

0, θ)di(a
0
−i(γ

0), θ) ≤ (resp. <) 0 (B.1)

for all i ∈ I such that ν0
Γ(Γi × Θ) > 0. An outcome ν ∈ ∆(A × Θ) satisfies reverse

sequential obedience (resp. strict reverse sequential obedience) if there exists an ordered

outcome ν0
Γ ∈ ∆(Γ×Θ) that reverse induces ν and satisfies reverse sequential obedience

(resp. strict reverse sequential obedience).

Definition B.2. Outcome ν satisfies two-sided grain of dominance if ν(1, θ) > 0 and

ν(0, θ) > 0.

Theorem B.1. (1) If an outcome is fully implementable, then it satisfies consistency,

strict sequential obedience, and strict reverse sequential obedience.

(2) If an outcome satisfies consistency, strict sequential obedience, strict reverse sequen-

tial obedience, and two-sided grain of dominance, then it is is fully implementable.

Necessity (i.e., part (1)) follows immediately by applying Theorem A.1(1) in both

directions. The proof for sufficiency (i.e., part (2)), given in Section B.1.1 below, is a

simple adaption of the proof of Theorem A.1(2). It proceeds with two ordered outcomes
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satisfying strict sequential obedience and strict reverse sequential obedience, respectively.

Then we construct an information structure analogous to that used in Theorem A.1(2),

where an integer was drawn almost uniformly on the integers and a player observed

a signal equal to that integer plus his rank in the sequence drawn from the ordered

outcome establishing strict sequential obedience. But now two sequences are drawn

independently from the two ordered outcomes (conditional on the recommended action

profile and the state). A player’s type will consist of an integer signal and an action

recommendation, where the recommended action indicates which of the two sequences

generates the integer signal. Then, an induction argument analogous to that for Theorem

A.1(2) shows that there is a unique equilibrium (in fact, unique rationalizable strategy

profile), which induces the target outcome.

Clearly, full implementability is stronger than S-implementability.36 Yet, we show that

maximal S-implementable outcomes (with respect to first-order stochastic dominance)

must indeed be fully implementable.

Proposition B.1. For any ν ∈ SI , there exists ν̂ ∈ FI that first-order stochastically

dominates ν.

The proof is given in Section B.1.3. This proposition, in particular, implies that FI 6= ∅.

Consider, as in Section 1.3, the optimal information design problem but with full

implementation:

sup
ν∈FI

∑
a∈A,θ∈Θ

ν(a, θ)V (a, θ) = max
ν∈FI

∑
a∈A,θ∈Θ

ν(a, θ)V (a, θ).

By Proposition B.1, under the monotonicity assumption on V , solving this problem

amounts to solving the problem with S-implementation: we have

max
ν∈FI

∑
a∈A,θ∈Θ

ν(a, θ)V (a, θ) = max
ν∈SI

∑
a∈A,θ∈Θ

ν(a, θ)V (a, θ),

and by Corollary 1, an optimal outcome of the information design problem with

full implementation can be obtained by a maximal optimal solution to the problem

maxν∈∆(A×Θ)

∑
a,θ ν(a, θ)V (a, θ) subject to consistency and sequential obedience.

B.1.1. Proof of Theorem B.1(2). In the following, for S ⊂ I, we denote by Γ(S) ⊂ Γ the

set of sequences of distinct players in S and by Π(S) ⊂ Γ(S) the set of permutations of

all players in S.

36For the game in Section 2, for example, if we reverse the order on actions to be “Invest < Not Invest”,
outcome (2.3) with − 1

4 ≤ δ < 0 satisfies strict sequential obedience but not strict reverse sequential

obedience and hence is S-implementable but not fully implementable.
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Let ν ∈ ∆(A × Θ) satisfy consistency, strict sequential obedience, strict reverse se-

quential obedience, and two-sided grain of dominance, and let ν+
Γ ∈ ∆(Γ × Θ) and

ν−
Γ ∈ ∆(Γ × Θ) be ordered outcomes establishing strict sequential obedience and strict

reverse sequential obedience, respectively. By two-sided grain of dominance, there

exist γ, γ containing all players such that ν+
Γ (γ, θ) > 0 and ν−

Γ (γ, θ) > 0 (where

ν+
Γ (γ, θ) ≤ ν−

Γ (∅, θ) and ν−
Γ (γ, θ) ≤ ν+

Γ (∅, θ)). For ε > 0 with ε < min{ν+
Γ (γ, θ), ν

−
Γ (γ, θ)},

define ν̃+
Γ , ν̃

−
Γ ∈ ∆(Γ×Θ) by

ν̃+
Γ (γ, θ) =


ν+
Γ (γ, θ)− ε

1− 2ε
if (γ, θ) = (γ, θ), (∅, θ),

ν+
Γ (γ, θ)

1− 2ε
otherwise,

and

ν̃−
Γ (γ, θ) =


ν−
Γ (γ, θ)− ε

1− 2ε
if (γ, θ) = (γ, θ), (∅, θ),

ν−
Γ (γ, θ)

1− 2ε
otherwise,

where we assume that ε is sufficiently small that ν̃+
Γ and ν̃−

Γ satisfy strict sequential

obedience and strict reverse sequential obedience, respectively, i.e.,∑
γ∈Γi,θ∈Θ

ν̃+
Γ (γ, θ)di(a−i(γ), θ) > 0

for all i ∈ I such that ν̃+
Γ (Γi ×Θ) > 0, and∑

γ∈Γi,θ∈Θ

ν̃−
Γ (γ, θ)di(a

0
−i(γ), θ) < 0

for all i ∈ I such that ν̃−
Γ (Γi ×Θ) > 0. Define also ν̃ ∈ ∆(A×Θ) by

ν̃(a, θ) =


ν(a, θ)− ε

1− 2ε
if (a, θ) = (1, θ), (0, θ),

ν(a, θ)

1− 2ε
otherwise.

Observe that
∑

γ+:a(γ+)=a ν̃
+
Γ (γ

+, θ) =
∑

γ−:a0(γ−)=a ν̃
−
Γ (γ

−, θ) = ν̃(a, θ) for all (a, θ) ∈

A×Θ.

By the dominance state assumption, we can take a q̄ < 1 such that

q̄di(0−i, θ) + (1− q̄)min
θ ̸=θ

di(0−i, θ) > 0,

q̄di(1−i, θ) + (1− q̄)max
θ ̸=θ

di(1−i, θ) < 0

for all i ∈ I. Then let η > 0 be such that
ε

|I|−1

ε
|I|−1

+ η
≥ q̄,
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and ∑
γ∈Γi,θ∈Θ

(1− η)|I|−n(a−i(γ))−1ν̃+
Γ (γ, θ)di(a−i(γ), θ) > 0

for all i ∈ I such that ν̃+
Γ (Γi ×Θ) > 0, and∑

γ∈Γi,θ∈Θ

(1− η)|I|−n0(a0−i(γ))−1ν̃−
Γ (γ, θ)di(a

0
−i(γ), θ) < 0

for all i ∈ I such that ν̃−
Γ (Γi ×Θ) > 0, where n0(a0−i(γ)) is the number of players playing

action 0 in the action profile a0−i(γ).

Now construct the type space (T, π) as follows. For each i ∈ I, let Ti = {1, 2, . . .}×Ai.

Define π ∈ ∆(T ×Θ) by the following: for each t = (si, ai)i∈I ∈ T and θ ∈ Θ, let

π(t, θ)

=



(1− 2ε)η(1− η)m
ν̃+
Γ (γ

+, θ)ν̃−
Γ (γ

−, θ)

ν̃(a, θ)
if ν̃(a, θ) > 0 and there existm ∈ N,
γ+ ∈ Π(S(a)), and γ− ∈ Π(I\S(a))
such that si = m + ℓ(i, γ+) for all

i ∈ S(a) and si = m + ℓ(i, γ−) for

all i ∈ I \ S(a),
ε

|I| − 1
if 1 ≤ s1 = · · · = s|I| ≤ |I| − 1 and

(a, θ) = (1, θ), (0, θ),

0 otherwise,

where ℓ(i, γ) = ℓ if i = iℓ. Observe that π is consistent with µ:
∑

t π(t, θ) = µ(θ) for all

θ ∈ Θ.

The rest of the proof is completed by mimicking the proof of Theorem A.1(2). A

similar argument as in the proof of Theorem A.1(2) shows that action 1 (resp. 0) is

uniquely rationalizable for all players of types ti = (si, ai) with ai = 1 (resp. ai = 0).

By construction, the unique rationalizable strategy profile, hence the unique equilibrium,

induces ν, as desired.

B.1.2. (Reverse) Sequential Obedience in Complete Information Games. In this section,

we report an important property of (reverse) sequential obedience in complete information

games, which will be used in the proof of Proposition B.1 in Section B.1.3. A complete

information BAS game is given by a profile of payoff difference functions fi : A−i → R,

i ∈ I. Let X ⊂ ∆(A) (resp. X0 ⊂ ∆(A)) denote the set of outcomes that satisfy

sequential obedience (resp. reverse sequential obedience) in (fi)i∈I , which is endowed

with the first-order stochastic dominance order.

Proposition B.2. In any complete information BAS game, the following hold:
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(1) X has a largest element, which is degenerate on some action profile and satisfies strict

reverse sequential obedience.

(2) X0 has a smallest element, which is degenerate on some action profile and satisfies

strict sequential obedience.

In particular, from this proposition it follows that any complete information BAS

game has an action profile (or an outcome degenerate on some action profile) that sat-

isfies sequential obedience and strict reverse sequential obedience (by part (1)) and an

action profile that satisfies strict sequential obedience and reverse sequential obedience

(by part (2)).

Proof. By symmetry, we only prove (2). By the proof of Lemma 2(2) in Oyama and

Takahashi (2019) along with the convexity, X0 has a smallest element, which is degenerate

on some action profile, say a1 ∈ A. Denote S1 = S(a1) = {i ∈ I | a1i = 1}. Let

00 ∈
∏

j∈I\S1 Aj denote the action profile of players in I \S1 such that all players in I \S1

play action 0, and for i ∈ S1 and γ0 ∈ Γ(S1), let b0−i(γ
0) ∈

∏
j∈S1\{i}Aj denote the action

profile of players in S1 such that only the players in S1 that appear before i in γ0 play

action 0.

Claim B.1. There exists no ordered outcome ρ0 ∈ ∆(Γ(S1) \ {∅}) such that∑
γ0∈Γ(S1)\{∅}

ρ0(γ0)fi(b
0
−i(γ

0),00) ≤ 0 (B.2)

for all i ∈ S1.

Proof. Assume that there exists ρ0 ∈ ∆(Γ(S1)\{∅}) that satisfies (B.2) for all i ∈ S1. Let

ρ̄0 ∈ ∆(Π(I \ S1)) be an ordered outcome that establishes reverse sequential obedience

of a1. Define ρ̂0 ∈ ∆(Γ) by

ρ̂0(γ0) =

ρ̄0(γ0
0)ρ

0(γ0
1) if γ0 = (γ0

0 , γ
0
1) for some γ0

0 ∈ Π(I \ S1) and γ0
1 ∈ Γ(S1) \ {∅},

0 otherwise.

Then this ρ̂0 satisfies reverse sequential obedience and reverse induces an outcome that

is strictly stochastically dominated by (the degenerate outcome on) a1. The existence

of such an ordered outcome contradicts the condition that a1 is the smallest element of

X0. □

By Claim B.1, it follows from a duality theorem (or from Oyama and Takahashi (2020,

Lemma 2(1)) applied to the “subgame” (f 1
i )i∈S1 defined by f 1

i (b−i) = fi(b−i,0
0) for
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b−i ∈
∏

j∈S1\{i}) that there exists (λ1
i )i∈S1 ∈ RS1

++ such that∑
i∈S(γ0)

λ1
i fi(b

0
−i(γ

0),00) > 0

for all γ0 ∈ Γ(S1)\{∅}. This is equivalent to the condition that for any γ = (i1, . . . , i|S1|) ∈

Π(S1),
|S1|∑
ℓ=k

λ1
iℓ
fiℓ(a−iℓ(γ)) > 0 (B.3)

for all k = 1, . . . , |S1|. We want to show that the condition (A.5) in Proposition A.1

holds for the degenerate outcome on a1 (with |Θ| = 1). Fix any (λi)i∈I ∈ RI
+ such that

λi > 0 for some i ∈ S1. Let γλ = (i1, . . . , i|I|) be a permutation of all players such that

{i1, . . . , i|S1|} = S1 and
λi1

λ1
i1

≤ · · · ≤
λi|S1|
λ1
i|S1|

. Then we have

(LHS of (A.5)) ≥
∑
i∈S1

λifi(a−i(γ
λ))

=

|S1|∑
k=1

(
λik

λ1
ik

−
λik−1

λ1
ik−1

) |S1|∑
ℓ=k

λ1
iℓ
fiℓ(a−iℓ(γ

λ)) > 0

by (B.3), where we set
λi0

λ1
i0

= 0. Therefore, it follows from Proposition A.1 that a1 satisfies

strict sequential obedience. □

B.1.3. Proof of Proposition B.1. By Proposition B.2, we have the following:

Lemma B.1. If ν ∈ ∆(A×Θ) satisfies consistency, strict sequential obedience, and two-

sided grain of dominance, then there exists ν̂ ∈ ∆(A × Θ) that first-order stochastically

dominates ν and satisfies consistency, strict sequential obedience, strict reverse sequential

obedience, and two-sided grain of dominance.

Proof. For each S ⊂ I and θ ∈ Θ, apply Proposition B.2(1) to the complete information

game (di((·,1I\S), θ))i∈S: let a∗S,θ ∈
∏

i∈S Ai be an action profile that satisfies sequential

obedience and strict reverse sequential obedience in (di((·,1I\S), θ))i∈S with ρS,θ and ρ0S,θ,

respectively, where ρS,θ(Π(S(a
∗
S,θ))) = 1 and ρ0S,θ(Π(S \S(a∗S,θ))) = 1, and, by convention,

ρ∅,θ(∅) = ρ0∅,θ(∅) = 1. By construction, for any S ⊂ I and θ ∈ Θ, we have∑
γ∈Γ(S)∩Γi

ρS,θ(γ)di(a−i((γ
′, γ)), θ) ≥ 0 (B.4)

for all γ′ ∈ Π(I \ S) and all i ∈ S(a∗S,θ), and∑
γ0∈Γ(S)∩Γi

ρ0S,θ(γ
0)di(a

0
−i(γ

0), θ) < 0 (B.5)
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for all i ∈ S \ S(a∗S,θ). Note, in particular, that a∗I,θ = 0 and hence ρI,θ(∅) = 1 by the

dominance state assumption.

Let ν ∈ ∆(A×Θ) satisfy consistency, strict sequential obedience with νΓ ∈ ∆(Γ×Θ),

and two-sided grain of dominance. Define ν̂Γ, ν̂
0
Γ ∈ ∆(Γ×Θ) by

ν̂Γ(γ, θ) =
∑

γ′,γ′′:(γ′,γ′′)=γ

νΓ(γ
′, θ)ρI\S(γ′),θ(γ

′′)

and

ν̂0
Γ(γ

0, θ) =
∑

a:S(a)⊂I\S(γ0)

ν(a, θ)ρ0I\S(a),θ(γ
0),

where for γ ∈ Γ, S(γ) denotes the set of players that appear in γ. Observe that ν̂Γ(γ, θ) >

0 for some γ ∈ Π(I) and ν̂Γ(∅, θ) > 0 by two-sided grain of dominance and ρI,θ(∅) = 1.

Then define ν̂ ∈ ∆(A×Θ) by

ν̂(a, θ) =
∑

γ:a(γ)=a

ν̂Γ(γ, θ)

=
∑

a′:S(a′)⊂S(a), S(a)\S(a′)=S
(
a∗
I\S(a′),θ

) ν(a′, θ).

One can verify that ν̂ satisfies consistency and two-sided grain of dominance and first-

order stochastically dominates ν, and that ν̂0
Γ reverse induces ν̂.

Then, ν̂Γ satisfies strict sequential obedience, since for each i ∈ I, where νΓ(Γi×Θ) > 0

and ν̂Γ(Γi ×Θ) > 0, we have∑
γ∈Γi,θ∈Θ

ν̂Γ(γ, θ)di(a−i(γ), θ)

=
∑
θ∈Θ

∑
γ′∈Γi

νΓ(γ
′, θ)di(a−i(γ

′), θ)

+
∑
θ∈Θ

∑
S⊂I\{i}

∑
γ′∈Π(S)

νΓ(γ
′, θ)

∑
γ′′∈Γ(I\S)∩Γi

ρI\S,θ(γ
′′)di(a−i((γ

′, γ′′)), θ) > 0,

where the inequality follows from the strict sequential obedience of νΓ and (B.4).

Finally, ν̂0
Γ satisfies strict reverse sequential obedience, since for each i ∈ I, where

ν̂0
Γ(Γi ×Θ) > 0, we have∑

γ0∈Γi,θ∈Θ

ν̂0
Γ(γ

0, θ)di(a
0
−i(γ

0), θ)

=
∑
θ∈Θ

∑
S⊂I\{i}

∑
γ′∈Π(S)

νΓ(γ
′, θ)

∑
γ0∈Γ(I\S)∩Γi

ρ0I\S,θ(γ
0)di(a

0
−i(γ

0), θ) < 0,

where the inequality follows from (B.5). □

From Lemma B.1 and Theorem B.1, we have the following:
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Lemma B.2. If an outcome ν satisfies consistency and sequential obedience, then there

exists an outcome ν̂ ∈ FI that first-order stochastically dominates ν.

Proof. First, it follows from Lemma B.1 and Theorem B.1(2) that for any ν ∈ ∆(A×Θ)

that satisfies consistency, strict sequential obedience, and two-sided grain of dominance,

there exists ν̂ ∈ FI that first-order stochastically dominates ν.

Now let ν ∈ ∆(A × Θ) satisfy consistency and sequential obedience. Then, as in the

proof of Theorem 1, there exists a sequence of outcomes νε ∈ ∆(A × Θ) converging to

ν that satisfy consistency, strict sequential obedience, and two-sided grain of dominance.

As noted above, for each ε, there exists an outcome ν̂ε ∈ FI that first-order stochastically

dominates νε. Then a limit point of ν̂ε, which is contained in FI , first-order stochastically

dominates ν. □

Finally, Proposition B.1 follows from Theorem 1 and Lemma B.2.

B.2. Alternative Assumptions.

B.2.1. Non-Supermodular Payoffs. In this section, we consider general binary-action

games with possibly non-supermodular payoffs and demonstrate that our arguments will

still work if we employ rationalizability, rather than equilibrium, as a solution concept

in implementing incomplete information games and strengthen the sequential obedience

condition accordingly.

Let a base game (di)i∈I be given, which may not be supermodular. To simplify the

argument, we focus on the “always play 1” outcome, i.e., the outcome ν̄ such that

ν̄(1, θ) = µ(θ) for all θ ∈ Θ (which satisfies consistency by construction). The out-

come ν̄ is fully implementable in rationalizable strategies if there exists an information

structure in which the profile of the “all types play action 1” strategies is the unique

interim correlated rationalizable strategy profile. An ordered outcome νΓ ∈ ∆(Γ × Θ)

satisfies strong sequential obedience if∑
γ∈Γi,θ∈Θ

νΓ(γ, θ) min
a−i≥a−i(γ)

di(a−i, θ) > 0

for all i ∈ I such that νΓ(Γi×Θ) > 0; an outcome ν ∈ ∆(A×Θ) satisfies strong sequential

obedience if there exists an ordered outcome that induces ν and satisfies strong sequential

obedience. Impose the dominance state assumption that there exists θ ∈ Θ such that for

all i ∈ I, di(a−i, θ) > 0 for all a−i ∈ A−i.
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Now consider the BAS game (di)i∈I defined by di(a−i, θ) = mina′−i≥a−i
di(a

′
−i, θ) for all

i ∈ I and a−i ∈ A−i (where the dominance state assumption is satisfied). Then, clearly, ν̄

is fully implementable in rationalizable strategies in (di)i∈I if and only if it is fully (hence

S-)implementable in (di)i∈I , and νΓ satisfies strong sequential obedience in (di)i∈I if and

only if it satisfies strict sequential obedience in (di)i∈I . Therefore, by Theorem A.1, we

have:

Proposition B.3. Let (di)i∈I be any binary-action game. Then the outcome ν̄ is fully

implementable in rationalizable strategies if and only if it satisfies strong sequential obe-

dience.

B.2.2. Many Actions. In this section, we consider games with many actions and present

a generalized notion of sequential obedience that is necessary for S-implementability

in these games. We also report a special case in which this notion is sufficient for S-

implementability.

Let the action set Ai of player i ∈ I be represented by a finite set of points in [0, 1]

that contains 0 and 1 (so that minAi = 0 and maxAi = 1), and let a base game (ui)i∈I

be given, where we assume supermodularity: for all θ ∈ Θ, i ∈ I, and ai, a
′
i ∈ Ai with

ai < a′i, ui((a
′
i, a−i), θ) − ui((ai, a−i), θ) is nondecreasing in a−i ∈ A−i. The concept of

smallest equilibrium implementability (S-implementability) is defined analogously to the

case of binary actions.

A sequence γ = (a0, a1, . . . , ak) of action profiles is a unilateral deviation path from

0 if a0 = 0, and for each ℓ = 1, . . . , k, there exists iℓ ∈ I such that aℓiℓ > aℓ−1
iℓ

and

aℓj = aℓ−1
j for all j ∈ I \{iℓ}. Let Γ be the set of all unilateral deviation paths from 0. For

γ = (a0, a1, . . . , ak) ∈ Γ, denote a(γ) = ak. An ordered outcome νΓ ∈ ∆(Γ × Θ) induces

an outcome ν ∈ ∆(A×Θ) if

ν(a, θ) =
∑

γ:a(γ)=a

νΓ(γ, θ).

For i ∈ I and ai, a
′
i ∈ Ai with ai < a′i, let Γi(ai, a

′
i) ⊂ Γ be the set of unilateral deviation

paths along which player i switches from ai to a′i, and for γ ∈ Γi(ai, a
′
i), let a−i(γ; ai, a

′
i)

be the profile of the opponents’ actions when player i switches from ai to a′i.

An ordered outcome νΓ ∈ ∆(Γ×Θ) satisfies strict sequential obedience if∑
γ∈Γi(ai,a′i),θ∈Θ

νΓ(γ, θ)(ui((a
′
i, a−i(γ; ai, a

′
i)), θ)− ui((a

′′
i , a−i(γ; ai, a

′
i)), θ)) > 0 (B.6)
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for all i ∈ I and ai, a
′
i, a

′′
i ∈ Ai with ai ≤ a′′i < a′i such that νΓ(Γi(ai, a

′
i) × Θ) > 0.

An outcome ν ∈ ∆(A×Θ) satisfies strict sequential obedience if there exists an ordered

outcome νΓ ∈ ∆(Γ×Θ) that induces ν and satisfies strict sequential obedience. If |Ai| = 2

for all i ∈ I, this coincides with the definition in the binary-action case.

Then, an argument almost identical with that in the proof of Theorem A.1(1) shows

that if an outcome is S-implementable, then it satisfies this version of strict sequential

obedience along with consistency and obedience: in an implementing information struc-

ture, consider the sequential best response process from the smallest strategy and for any

pair of actions ai < a′i, aggregate the obedience conditions upon the switch from ai to a′i

in the process.

For sufficiency, we report a special case in which the generalized strict sequential obe-

dience condition above, along with consistency, implies S-implementability. We focus

on the “always play 1” outcome, i.e., the outcome ν̄ such that ν̄(1, θ) = µ(θ) for all

θ ∈ Θ. Let Π ⊂ Γ be the set of unilateral deviation paths γ = (a0, a1, . . . , a|I|) (of

length |I| + 1) such that for each ℓ = 1, . . . , |I|, aℓ−1
iℓ

= 0 and aℓiℓ = 1 for some iℓ ∈ I.

Now assume the dominance state assumption, that there exists θ ∈ Θ such that for all

i ∈ I, ui((1,0−i), θ)− ui((ai,0−i), θ) > 0 for all ai < 1, and suppose that the outcome ν̄

is induced by some ordered outcome νΓ ∈ ∆(Π × Θ) that satisfies the strict sequential

obedience condition (B.6), i.e., for all i ∈ I,∑
γ∈Π,θ∈Θ

νΓ(γ, θ)(ui((1, a−i(γ; 0, 1)), θ)− ui((ai, a−i(γ; 0, 1)), θ)) > 0 (B.7)

for all ai < 1. Then, this condition can be thought of as νΓ ∈ ∆(Π × Θ) satisfying

strict sequential obedience in a game with binary actions. Formally, for each (ai)i∈I ∈∏
i∈I(Ai \ {1}), define (daii )i∈I , d

ai
i : {0, 1}I\{i} ×Θ → R, by

daii (b−i, θ) = ui((1, b−i), θ)− ui((ai, b−i), θ).

Thus, the ordered outcome νΓ satisfies the condition (B.7) in (ui)i∈I if and only if it

satisfies strict sequential obedience in the BAS game (daii )i∈I for every (ai)i∈I ∈
∏

i∈I(Ai \

{1}), where Π is naturally identified with the set of permutations of all players. Hence,

the construction in the proof of Theorem A.1(2) applies to this case, which shows that

the outcome ν̄ is S-implementable in (ui)i∈I .

The condition discussed above is apparently very restrictive, but still broad enough

to cover the result of Hoshino (2022) (which builds on the argument for Lemma 5.5 in
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Kajii and Morris (1997)). Assume that for every state θ ∈ Θ, action profile 1 ∈ A is a

p(θ)-dominant equilibrium for some p(θ) = (pi(θ))i∈I ∈ [0, 1]I with
∑

i∈I pi(θ) ≤ 1, i.e.,

for any i ∈ I and any ai < 1,∑
a−i∈A−i

qi(a−i)(ui((1, a−i), θ)− ui((ai, a−i), θ)) ≥ 0

for any qi ∈ ∆(A−i) with qi(1−i) ≥ pi(θ). Note that this condition is equivalently written

as: for any i ∈ I and any ai < 1,∑
b−i∈{0,1}I\{i}

q
i
(b−i) min

a−i≥b−i

(ui((1, a−i), θ)− ui((ai, a−i), θ)) ≥ 0

for any q
i
∈ ∆({0, 1}I\{i}) with q

i
(1−i) ≥ pi(θ). Then, there exists some ordered outcome

νΓ ∈ ∆(Π × Θ) that induces ν̄ and satisfies the strict sequential obedience condition

(B.7). To see this, for each i ∈ I, let γi = (a0, a1, . . . , a|I|) ∈ Π be any path such that

player i is the last player who switches (i.e., such that a
|I|−1
i = 0 and a

|I|
i = 1). Define

ν
p(·)
Γ ∈ ∆(Π×Θ) by

ν
p(·)
Γ (γ, θ) =


pi(θ)∑
j∈I pj(θ)

µ(θ) if γ = γi, i ∈ I,

0 otherwise,

which induces ν̄. Then (B.7) is satisfied: for any i ∈ I and any ai < 1,∑
γ∈Π,θ∈Θ

ν
p(·)
Γ (γ, θ)(ui((1, a−i(γ; 0, 1)), θ)− ui((ai, a−i(γ; 0, 1)), θ))

=
∑
θ∈Θ

µ(θ)
∑

b−i∈{0,1}I\{i}
qp(θ)
i

(b−i)(ui((1, b−i), θ)− ui((ai, b−i), θ)) > 0,

where qp(θ)
i

∈ ∆({0, 1}I\{i}) is defined by qp(θ)
i

(b−i) =
ν
p(·)
Γ ({γ∈Π|a−i(γ;0,1)=b−i}×{θ})

µ(θ)
, which

satisfies qp(θ)
i

(1−i) = pi(θ)∑
j∈I pj(θ)

≥ pi(θ), so that
∑

b−i∈{0,1}I\{i} q
p(θ)
i

(b−i)(ui((1, b−i), θ) −

ui((ai, b−i), θ)) ≥ 0 holds for all θ ∈ Θ, with strict inequality for θ = θ.

In fact, even if (ui)i∈I is not supermodular, a stronger form of (B.7) holds, under the

dominance state assumption that for all i ∈ I, ui((1, a−i), θ) − ui((ai, a−i), θ) > 0 for all

ai < 1 and all a−i ∈ A−i:∑
γ∈Π,θ∈Θ

ν
p(·)
Γ (γ, θ) min

a−i≥a−i(γ;0,1)
(ui((1, a−i), θ)− ui((ai, a−i), θ))

=
∑
θ∈Θ

µ(θ)
∑

b−i∈{0,1}I\{i}
qp(θ)
i

(b−i) min
a−i≥b−i

(ui((1, a−i), θ)− ui((ai, a−i), θ)) > 0.
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Therefore, as argued in Section B.2.1, this implies that the outcome ν̄ is fully imple-

mentable in rationalizable strategies with or without supermodularity, which reproduces

the result of Hoshino (2022, Theorem 1).

B.2.3. Adversarial Information Sharing. In this section, we formulate and study an op-

timal information design problem where the designer is also concerned that information

might be shared among players in an adversarial way.

For an information structure T = ((Ti)i∈I , π), an information structure T ′ =

((T ′
i )i∈I , π

′) is an information sharing of T if there exist a profile (Zi)i∈I of sets of “sup-

plementary signals” and a signal generation rule ϕ : T → ∆(Z) such that T ′
i = Ti × Zi

for each i ∈ I, and π′(t, z, θ) = π(t, θ)ϕ(t)(z) for any t ∈ T , z ∈ Z, and θ ∈ Θ. The value

of information design under adversarial information sharing (and adversarial equilibrium

selection) is then formulated as

V † = sup
T

inf
T ′: information sharing of T

min
σ∈E(T ′)

∑
t′∈T ′,θ∈Θ

π′(t′, θ)V (σ(t′), θ). (B.8)

We first develop a useful alternative representation of this problem. A strategy profile

σ′ = (σ′
i)i∈I , σ

′
i : Ti × Zi → ∆(Ai), in the information sharing T ′ = ((Ti × Zi)i∈I , π

′) of T

induces an outcome ξ ∈ ∆(A× T ):

ξ(a, t) =
∑

z∈Z,θ∈Θ

π′(t, z, θ)
∏
i∈I

σ′
i(ti, zi)(ai)

= π(t)
∑
z∈Z

ϕ(t)(z)
∏
i∈I

σ′
i(ti, zi)(ai),

where π(t) =
∑

θ∈Θ π(t, θ). Thus, the value of V under σ′ is written as∑
t′∈T ′,θ∈Θ

π′(t′, θ)V (σ′(t′), θ) =
∑

a∈A,θ∈Θ

ξ(a, t)V T (a, t),

where V T (a, t) =
∑

θ∈Θ π(θ|t)V (a, θ) with π(θ|t) = π(t,θ)
π(t)

. Say that an outcome ξ ∈

∆(A × T ) is a Bayesian solution (Forges (1993)) of T if it satisfies consistency for T :∑
a∈A ξ(a, t) = π(t) for all t ∈ T , and obedience for T :∑
a−i∈A−i,t−i∈T−i

ξ((ai, a−i), (ti, t−i))
(
uT
i ((ai, a−i), (ti, t−i))− uT

i ((a
′
i, a−i), (ti, t−i))

)
≥ 0

for all i ∈ I, ti ∈ Ti, and ai, a
′
i ∈ Ai, where uT

i (a, t) =
∑

θ∈Θ π(θ|t)ui(a, θ). One can

show that an outcome ξ ∈ ∆(A×T ) is induced by some equilibrium of some information

sharing of T if and only if it is a Bayesian solution of T (see Bergemann and Morris

(2016)). Let BS (T ) ⊂ ∆(A × T ) denote the set of Bayesian solutions of T . Thus, the
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original problem (B.8) is rewritten as

V † = sup
T

min
ξ∈BS(T )

∑
a∈A,t∈T

ξ(a, t)V T (a, t). (B.9)

We want to compare this problem with the constrained problem where the designer can

only send public information to the players. We say that an information structure T =

((Ti)i∈I , π) is public if Ti = Tj for all i, j ∈ I, and
∑

t∈T :t1=···=t|I|,θ∈Θ π(t, θ) = 1. Under

the supermodularity of the payoffs and the monotonicity of V , the value of information

design under S-implementation with public information structures is

V ∗
public = sup

T : public
min

σ∈E(T )

∑
t∈T,θ∈Θ

π(t, θ)V (σ(t), θ) (B.10)

= sup
T : public

∑
t∈T

π(t)V T (σ(T )(t), t). (B.11)

We immediately have V † ≤ V ∗
public (compare the expressions (B.8) and (B.10)). On

the other hand, if T is a public information structure, then for any ξ ∈ BS (T ) and

for any t ∈ T , ξ(·|t) = ξ(·,t)
π(t)

∈ ∆(A) is a correlated equilibrium of (uT
i (·, t))i∈I , and

by supermodularity, BS (T ) has a smallest element, which equals σ(T ); thus we have

V † ≥ V ∗
public (compare (B.9) and (B.11)). Hence, by supermodularity and the objective

monotonicity, we have:

Proposition B.4. V † = V ∗
public.

Note that this result holds with any number of actions.

The set of outcomes that are S-implementable by public information structures can be

characterized by the following strengthening of sequential obedience. Say that an ordered

outcome νΓ ∈ ∆(Γ×Θ) satisfies public sequential obedience (resp. strict public sequential

obedience) if for every γ ∈ Γ such that
∑

θ∈Θ νΓ(γ, θ) > 0,∑
θ∈Θ

νΓ(γ, θ)di(a−i(γ), θ) ≥ (resp. >) 0 (B.12)

for all i ∈ S(γ). An outcome ν ∈ ∆(A × Θ) satisfies public sequential obedience (resp.

strict public sequential obedience) if there exists an ordered outcome that induces ν and

satisfies public sequential obedience (resp. strict public sequential obedience). It can

readily be shown that an outcome is S-implementable by a public information structure

if and only if it satisfies consistency, obedience, and strict public sequential obedience.

Therefore, the problem (B.11) (hence (B.8)) can also be written as

V ∗
public = max

ν∈∆(A×Θ)

∑
a∈A,θ∈Θ

ν(a, θ)V (a, θ)
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subject to consistency and public sequential obedience. This also has a concavification

form:

V ∗
public = sup

Q∈∆0(∆(Θ))

∑
q∈suppQ

Q(q)
∑
θ∈Θ

q(θ)V (a(q), θ)

subject to ∑
q∈suppQ

Q(q)q(θ) = µ(θ) for all θ ∈ Θ,

where ∆0(∆(Θ)) denotes the set of distributions over ∆(Θ) with finite support (with

suppQ denoting the support of Q ∈ ∆0(∆(Θ))), and a(q) ∈ A denotes the small-

est Nash equilibrium of the average game given by the common posterior q ∈ ∆(Θ):∑
θ∈Θ q(θ)ui(a, θ).

Let V ∗
private denote the optimal value of the unconstrained problem (i.e., the problem

under S-implementation with general information structures). Then V ∗
private ≥ V ∗

public triv-

ially, and a strict inequality holds—or equivalently, the unconstrained optimal outcome

is not S-implementable by a public information structure—for example under the as-

sumptions in Section 4 if in addition there is nontrivial strategic interdependence among

players in that Φ((1,0−i), θ) <
1
|I|Φ(1, θ) for some i ∈ I and some θ > θ∗. To see this,

let ν∗ be the optimal (perfect coordination) outcome given in (4.5) and let Πi be the set

of permutations of all players in which i appears first. Then for any ordered outcome νΓ

that induces ν∗, we have∑
i∈I,γ∈Πi

∑
θ∈Θ

νΓ(γ, θ)di(a−i(γ), θ) <
∑

i∈I,γ∈Πi

∑
θ∈Θ

νΓ(γ, θ)
1

|I|
Φ(1, θ)

=
1

|I|
∑
θ∈Θ

ν∗(1, θ)Φ(1, θ) = 0

(the first equality holds since the sets Πi form a partition of Π), so that public sequential

obedience is violated for some i ∈ I and γ ∈ Πi.

In Section A.6, we illustrated the solutions under public information structures as well

as under private (i.e., general) information structures for the example in Section 2.

B.2.4. Finite Information Structures. The construction in the proof of Theorem A.1(2)

involves infinitely many types, but a similar construction with a finite number of types

with a uniform—instead of geometric—distribution for the variable m can be used to S-

implement the same outcome, where the number of types will be large enough depending

on the probability µ(θ) of the dominance state θ and the degree of dominance at θ relative

to the payoffs at other states as well as the slackness of strict sequential obedience of
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the given outcome to be implemented. Specialized to a symmetric two-player two-state

example, Mathevet et al. (2020) present an information structure with three types or

less for each player that implements the optimal outcome. Our example in Section 2

also allows such a small information structure. Again specialized to a particular class of

games (i.e., regime change games), Li et al. (2023) identify the unique optimal information

structure when the number of types of each player is constrained by some upper bound

K and show that their unconstrained optimal information structure is obtained as the

limit of those finite information structures as K → ∞.

While we do not need literally infinitely many types as argued above, our results rely

on the assumption that there is no a priori bound on the number of types. To see what

would happen otherwise, suppose that 0 is a strict equilibrium at every state θ 6= θ. Let

SIK(µ) denote the set of outcomes that are S-implementable, under prior µ, by some

information structure such that the number of types of each player is at most K. By

Kajii and Morris (1997, Lemmas 5.2 and B), we immediately have the following.

Proposition B.5. Suppose that 0 is a strict equilibrium at every θ 6= θ. Then for any

K < ∞ and δ > 0, there exists ε > 0 such that if µ(θ) ≤ ε, then for any ν ∈ SIK(µ), we

have
∑

θ∈Θ ν(0, θ) ≥ 1− δ.

That is, if there is a bound on the number of types, then as the probability of the

dominance state vanishes, the S-implementable outcomes tend only to be the trivial

outcome “always play 0”. Note that this result holds for general games (with any finite

number of actions and possibly non-supermodular payoffs).

B.2.5. Uncountable Information Structures. In this section, we demonstrate that Theo-

rem A.1(1) (and hence Theorem 1) will continue to hold with possibly uncountable type

spaces.

Let the finite state space Θ with prior µ ∈ ∆(Θ) and the base game (di)i∈I be given

as in Section 1.1. An information structure is defined as follows. For each player i ∈ I,

the set Ti of types is a measurable space endowed with sigma-algebra Fi, where we write

T =
∏

i∈I Ti and F =
⊗

i∈I Fi. The common prior π is a probability measure on T × Θ

(endowed with the product sigma-algebra F ⊗ 2Θ). Let πX denote the marginal of π on

X = Ti, T,Θ, etc. We require π to be consistent with µ, i.e., πΘ = µ.

In the incomplete information game induced by an information structure ((Ti,Fi)i∈I , π),

a (pure) strategy for player i ∈ I is an equivalence class of measurable functions from
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Ti to Ai modulo being equal πTi
-a.s. Let Σi be the partially ordered set of strategies of

i, where σi ≤ σ′
i is understood as σi(ti) ≤ σ′

i(ti) for πTi
-a.s. ti ∈ Ti. Write Σ =

∏
i∈I Σi

and Σ−i =
∏

j ̸=iΣj (endowed with the product partial orders, respectively). For i ∈ I,

ti ∈ Ti, and σ−i ∈ Σ−i, write

Di(σ−i|ti) = E[di(σ−i(·), ·)|Fi](ti),

which is measurable in ti and nondecreasing in σ−i, and let βi(σ−i) be the set of best

responses to σ−i, i.e., the set of strategies σi ∈ Σi such that for πTi
-a.s. ti ∈ Ti,Di(σ−i|ti) ≥

0 (resp.Di(σ−i|ti) ≤ 0) if σi(ti) = 1 (resp. σi(ti) = 0). A strategy profile σ = (σi)i∈I ∈ Σ is

an equilibrium if for all i ∈ I, σi ∈ βi(σ−i). By the supermodularity (and the boundedness

and the continuity of di(a−i, θ) in a−i), a smallest equilibrium exists and it is the limit of

sequential best responses from the smallest strategy profile, as we now show below.

For i ∈ I, define β
i
: Σ−i → Σi by

β
i
(σ−i)(ti) =

1 if Di(σ−i|ti) > 0,

0 if Di(σ−i|ti) ≤ 0

for πTi
-a.s. ti ∈ Ti, which is well defined (measurable in ti and unique up to πTi

-a.s.) and

nondecreasing in σ−i. By construction, β
i
(σ−i) is the smallest element of βi(σ−i). Then

define the sequence of strategy profiles {σn} as follows: let σ0
i (ti) = 0 for all i ∈ I and

ti ∈ Ti, and for n = 1, 2, . . ., let

σn
i =

β
i
(σn−1

−i ) if i ≡ n (mod |I|),

σn−1
i otherwise.

By the monotonicity of β
i
, this sequence is monotone increasing, σ0 ≤ σ1 ≤ · · · , and

converges as n → ∞ to some σ ∈ Σ πT -a.s. Since for each i ∈ I, Di(σ−i|ti) =

limn→∞Di(σ
n
−i|ti) for πTi

-a.s. by the dominated convergence theorem, σ is an equilib-

rium, and again by the monotonicity of β
i
, it is the smallest equilibrium.

Now we show the necessity of strict sequential obedience for S-implementability within

this framework. Let ν ∈ ∆(A× Θ) be S-implementable, and ((Ti,Fi)i∈I , π) be an infor-

mation structure whose smallest equilibrium σ induces ν, i.e., ν(a, θ) = π({t ∈ T | σ(t) =

a} × {θ}). Define the sequence of strategy profiles {σn} as above, and let T̄i ∈ Fi be the

set of types such that {σn
i (ti)} is monotone, where πTi

(T̄i) = 1. On T̄ =
∏

i∈I T̄i, define

ni(ti) and T (γ), γ ∈ Γ, as in the proof of Theorem A.1(1), where one can verify that
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T (γ) ∈ F . Then define νΓ ∈ ∆(Γ × Θ) by νΓ(γ, θ) = π(T (γ) × {θ}), which induces ν.

We want to show that νΓ satisfies strict sequential obedience.

Fix any i ∈ I with νΓ(Γi × Θ) > 0, where πTi
({ti ∈ T̄i | ni(ti) = n}) > 0 for some

n ∈ N. Note that for all n ∈ N and all ti ∈ T̄i with ni(ti) = n, we have Di(σ
n−1
−i |ti) > 0.

Hence, we have

0 <
∑
n∈N

∫
{ti∈T̄i|ni(ti)=n}

Di(σ
n−1
−i |ti)dπTi

(ti)

=
∑
n∈N

∫
{ti∈T̄i|ni(ti)=n}×T̄−i×Θ

di(σ
n−1
−i (t−i), θ)dπ(t, θ)

=
∑
n∈N

∑
a−i∈A−i,θ∈Θ

di(a−i, θ)π({t ∈ T̄ | ni(ti) = n, σn−1
−i (t−i) = a−i} × {θ})

=
∑

a−i∈A−i,θ∈Θ

di(a−i, θ)π({t ∈ T̄ | ni(ti) < ∞, σ
ni(ti)−1
−i (t−i) = a−i} × {θ})

=
∑

a−i∈A−i,θ∈Θ

di(a−i, θ)
∑

γ∈Γi:a−i(γ)=a−i

π(T (γ)× {θ})

=
∑

γ∈Γi,θ∈Θ

di(a−i(γ), θ)π(T (γ)× {θ}) =
∑

γ∈Γi,θ∈Θ

di(a−i(γ), θ)νΓ(γ, θ),

as desired.

B.2.6. Dominance State Assumption. The dominance state assumption, that there exists

θ ∈ Θ such that di(0−i, θ) > 0 for all i ∈ I, is maintained throughout the analysis and

used in Theorem A.1(2) (and other results that use Theorem A.1(2)). This exact form of

the assumption, however, is stronger than needed and can be relaxed. Consider instead

the following weakening, say the “sequential dominance states assumption”: there exist

a permutation γ of all players and states θi ∈ Θ, i ∈ I, such that di(a−i(γ), θ
i) > 0

for all i ∈ I. Under this condition, if ν satisfies consistency, obedience, strict sequential

obedience, and grain of dominance with respect to (θi)i∈I , i.e., ν(1, θ
i) > 0 for each i ∈ I,

then one can construct an information structure, similar to, but more involved than, the

one in the proof of Theorem A.1(2), that S-implements ν. Thus, we have:

Proposition B.6. If the sequential dominance states assumption is satisfied with respect

to (θi)i∈I , and ν satisfies consistency, obedience, strict sequential obedience, and grain of

dominance with respect to (θi)i∈I , then ν ∈ SI .
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Conversely, if there exists ν ∈ SI such that ν(1, θ) > 0 for some θ ∈ Θ, then the

sequential dominance states assumption must be satisfied.37 Thus, it is weakest possible

in this sense.

B.2.7. Indispensability of Grain of Dominance. This section presents an example demon-

strating that the grain of dominance property is indispensable in Theorem A.1(2).

Consider the following game: Let I = {1, 2} and Θ = {θ1, θ2, θ3}, and let µ(θ) = 1
3
for

all θ ∈ Θ. The payoffs for each i ∈ I are given by

di(aj, θ1) = −2, di(aj, θ3) = 1

for all aj ∈ Aj, j 6= i, and

di(0, θ2) = −1, di(1, θ2) = 2.

The dominance state assumption is satisfied with θ = θ3.

Let ν ∈ ∆(A × Θ) be defined by ν(0, θ) = µ(θ) for θ = θ1, θ3 and ν(1, θ2) = µ(θ2)

(and ν(a, θ) = 0 otherwise). It satisfies consistency, obedience, and strict sequential

obedience (for example with νΓ ∈ ∆(Γ × Θ) such that νΓ(∅, θ) = ν(0, θ) for θ = θ1, θ3

and νΓ(12, θ2) = νΓ(21, θ2) =
ν(1,θ2)

2
), but not grain of dominance. We claim that ν /∈ SI .

Let T = ((Ti)i∈I , π) be any information structure that has an equilibrium σ that

induces ν. We show that the smallest strategy profile σ0, the strategy profile such that

σ0
i (0|ti) = 1 for all ti, is an equilibrium (hence the smallest equilibrium) in any such T .

Let

T ai
i = {ti ∈ Ti | σi(ai|ti) = 1},

and T a = T a1
1 × T a2

2 . By the assumption that σ induces ν, we have Ti = T 0
i ∪ T 1

i and

π(T 0 × {θ}) = µ(θ), θ = θ1, θ3,

π(T 1 × {θ2}) = µ(θ2),

and hence π(θ2|ti) = 1 for all ti ∈ T 1
i . Therefore, for all ti ∈ T 1

i , ai = 0 is a best response

against σ0
j . For ti ∈ T 0

i , ai = 0, which is a best response against σj, continues to be a best

response against σ0
j by supermodularity. This shows that σ0 is the smallest equilibrium

for any information structure that partially implements ν, which implies that ν /∈ SI .

37If such an S-implementable outcome exists, then for any S ⫋ I, there exist i ∈ I \ S and θ ∈ Θ
such that di(1S , θ) > 0 (if there is no such pair of i ∈ I \ S and θ ∈ Θ, then for any ν ∈ SI , we would
have ν(a, θ) = 0 for all θ ∈ Θ whenever ai = 1 for some I \ S). Then inductively apply this condition to
construct γ and θi in the sequential dominance state assumption.
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B.3. Perfect Coordination in Generalized Regime Change Games. In this sec-

tion, we show that the perfect coordination property holds—i.e., an optimal outcome is

found among perfect coordination outcomes—in generalized regime change games.

The base game (di)i∈I is a generalized regime change game if there exists a function

r : A×Θ → {0, 1} such that for all i ∈ I,

di(a−i, θ)

> 0 if r((0, a−i), θ) = 1,

≤ 0 if r((0, a−i), θ) = 0.

By supermodularity, r(a, θ) must be nondecreasing in a. To be consistent with the

dominance state assumption, we assume that for some θ ∈ Θ, r(0, θ) = 1 for all i ∈ I.

This game is a generalization of the regime change game in Example A.2, where r(a, θ) = 1

if and only if n(a) ≥ |I| − k(θ), and corresponds to the game considered in Inostroza and

Pavan (2022, Additional Material, Section AM3). The following proposition is a version

of their Theorem AM3-1 restricted to our setting, where our concise proof appeals to our

sequential obedience characterization of Theorem 1.

Proposition B.7. Let (di)i∈I be a generalized regime change game. For any outcome ν ∈

SI , there exists a perfect coordination outcome ν̂ ∈ SI such that
∑

a∈A:r(a,θ)=1 ν̂(a, θ) =∑
a∈A:r(a,θ)=1 ν(a, θ) for all θ ∈ Θ.

Proof. Let (di)i∈I be a generalized regime change game, and let ν ∈ SI . By Theorem 1,

ν satisfies consistency, obedience, and sequential obedience. Thus, by Proposition A.1, it

satisfies condition (A.5). Define ν̂ ∈ ∆(A×Θ) by

ν̂(a, θ) =


∑

a′∈A:r(a′,θ)=1 ν(a
′, θ) if a = 1,∑

a′∈A:r(a′,θ)=0 ν(a
′, θ) if a = 0,

0 otherwise,

which by construction satisfies consistency and perfect coordination. It also satisfies,

for each θ ∈ Θ,
∑

a∈A:r(a,θ)=1 ν(a, θ) =
∑

a∈A:r(a,θ)=1 ν̂(a, θ) since by the monotonicity of

r(a, θ) in a, {a ∈ A | r(a, θ) = 1} 6= ∅ if and only if r(1, θ) = 1. We want to show that ν̂

satisfies obedience and sequential obedience.

First, for sequential obedience, we show that ν̂ satisfies condition (A.5) in Proposi-

tion A.1. Indeed, for any (λi)i∈I ∈ RI
+, we have∑

a∈A,θ∈Θ

ν̂(a, θ) max
γ:a(γ)=a

∑
i∈S(a)

λidi(a−i(γ), θ)
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=
∑
θ∈Θ

ν̂(1, θ) max
γ:a(γ)=1

∑
i∈I

λidi(a−i(γ), θ)

=
∑

a∈A,θ∈Θ
r(a,θ)=1

ν(a, θ) max
γ:a(γ)=1

∑
i∈I

λidi(a−i(γ), θ)

≥
∑

a∈A,θ∈Θ
r(a,θ)=1

ν(a, θ) max
γ:a(γ)=a

∑
i∈I

λidi(a−i(γ), θ)

≥
∑

a∈A,θ∈Θ
r(a,θ)=1

ν(a, θ) max
γ:a(γ)=a

∑
i∈S(a)

λidi(a−i(γ), θ)

≥
∑

a∈A,θ∈Θ

ν(a, θ) max
γ:a(γ)=a

∑
i∈S(a)

λidi(a−i(γ), θ) ≥ 0,

where the first inequality holds by supermodularity (for i /∈ S(γ), a−i(γ) denotes the

action profile of i’s opponents such that player j plays action 1 if and only if j ∈ S(γ)),

the second inequality holds since di(a−i, θ) > 0 when r((0, a−i), θ) = 1, the third inequal-

ity holds since di(a−i, θ) ≤ 0 when r((1, a−i), θ) = 0, and the last inequality holds by

condition (A.5) for ν. Therefore, by Proposition A.1, ν̂ satisfies sequential obedience.

Second, for lower obedience (i.e., condition (1.1) with ai = 0), for each i ∈ I we have

∑
a−i∈A−i,θ∈Θ

ν̂((0, a−i), θ)di(a−i, θ) =
∑
θ∈Θ

ν̂(0, θ)di(0−i, θ) =
∑

a∈A,θ∈Θ:
r(a,θ)=0

ν(a, θ)di(0−i, θ)

≤
∑

a∈A,θ∈Θ:
r(a,θ)=0

ν(a, θ)di(a−i, θ)

=
∑

a−i∈A−i,θ∈Θ:
r((1,a−i),θ)=0

ν((1, a−i), θ)di(a−i, θ) +
∑

a−i∈A−i,θ∈Θ:
r((0,a−i),θ)=0

ν((0, a−i), θ)di(a−i, θ)

≤
∑

a−i∈A−i,θ∈Θ:
r((0,a−i),θ)=0

ν((0, a−i), θ)di(a−i, θ)

≤
∑

a−i∈A−i,θ∈Θ

ν((0, a−i), θ)di(a−i, θ) ≤ 0,

where the first inequality holds by supermodularity, the second inequality holds since

di(a−i, θ) ≤ 0 when r((1, a−i), θ) = 0, the third inequality holds since di(a−i, θ) > 0 when

r((0, a−i), θ) = 1, and the last inequality holds by the lower obedience of ν. Therefore, ν̂

satisfies lower obedience.

Hence, we have ν̂ ∈ SI by Theorem 1. □
65



For a generalized regime change game (di)i∈I , the objective V is a generalized regime

change objective with respect to (di)i∈I if it is written as

V (a, θ) =

> 0 if r(a, θ) = 1,

= 0 if r(a, θ) = 0,

where we maintain the assumption that V (a, θ) is nondecreasing in a. By Proposition B.7,

we immediately have the following.

Proposition B.8. Let (di)i∈I be a generalized regime change game, and V a generalized

regime change objective with respect to (di)i∈I . Then there exists an optimal outcome of

the adversarial information design problem that satisfies perfect coordination.

Like Inostroza and Pavan (2022), we are not able to obtain explicitly the solution

to the problem at this level of generality. Under the assumption of the existence of a

convex potential (which covers symmetric regime change games), we derived an explicit

expression of the optimal perfect coordination outcome in Theorem 2 in Section 4.
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