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APPENDIX C: PROOFS AND AUXILIARY RESULTS FOR SECTION 3.2

PROOF OF PROPOSITION 3: For any p € (0,2], o,(a, a) and o,(a, a) strictly increase in
a € [a, a], so ¥*(a) increases in a as well. Hence, a = ¢ dominates any a < a. By a similar
argument, sampling a > a is suboptimal as well. So, for any p € (0, 2], a’ € [a, a].

(i) For p =1, the statement follows from Proposition 2. Consider p < 1. The posterior
variance satisfies the following: (i) lim,,, dy*(a)/da = —oo, (ii) lim,; d*(a)/da = oo,
and (iii) ¢ is differentiable and weakly convex in (a, a). Therefore, i is maximized at
the endpoints of [a, a]: only the two relevant attributes are optimal.

(ii) Let p > 1. The sign of dy*(a)/da is determined by the sign of the function A(a) :=
o,(a,a)(a—a)’™ — o,(a,a)(a—a)’~"'. Clearly, * is strictly increasing at a = a because
h(a) > 0 and strictly decreasing at a = a because h(a) < 0. Hence, a* € (a, a). The single-
player sample a° satisfies #(a*) = 0, that is,

a-a o,(a,a’)

The function % has either a unique zero at (a + a)/2, or three zeros, of which one is
(a + a)/2 and the other two are symmetric with respect to it. There exists at most one

a* < (a+a)/2 because
&—as p as_g p
(A ) (7 )

=a-p(as,&)(&—a a—a a—a

a=a’ =

dh
da

has the same sign over (a, (a+a)/2). Hence, & is either globally decreasing or decreasing-
increasing-decreasing over (a, a).

As ¢ — 0, the RHS of (1) goes to zero for any a° € (a, a), hence the two single-player
samples converge to a° | a and a* 1 a, respectively. At any a*, such that /4(a*) = 0 and
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a’ < (a+ a)/2 (i.e., for which & crosses zero thrice), the function /4 is decreasing at a’.
Note that 4 is increasing in ¢ at such an a° because

dh p c e o fa—a\  [(a—a\’
2 tawaa-ey (( : >_< : >)>0.

Moreover, the function / is decreasing in a at a = a* such that A(a*) =0 and @* < (a +
a)/2. Thus, as ¢ increases the single-player sample to the left of (a + @)/2 shifts to the
right. By the mirror argument, the single-player sample that is strictly closer to a shifts to
the left as ¢ increases.

For ¢ sufficiently large, the function # is strictly decreasing at (a + a)/2. To see this,

consider
_ = 14
S —rmaeareren (p((HF) -2)+2).
L P ¢

which is strictly negative for ¢ large because ((a — a)/¢)? — 0 as £ — +oo. Therefore,
it must be that 4 is strictly decreasing over (a, @), hence the single-player sample is a* =
(a+a)/2.

Finally, fix ¢ > 0. As p | 1, the RHS of (1) converges to a strictly positive value whereas
the LHS shrinks to 0 for any fixed sample. Therefore, the two single-player samples con-
verge to a’ | a and a’ 1 a, respectively. QE.D.

LEMMA C.1: Suppose Assumption 2 holds. Fix a sample a={ay, ..., a;},where 0 < a, <
-+ < ay < 1. For the singleton sample, a ={a\}, 7(a;) = £(2 — e~ /* — e=1=9)/%) For k > 2,
the sample realization f(a;) is weighted by

Z(l—e‘“l/f-l—tanh(az;Zal)) ifji=1

a;—4aj aji1—4a; g
i(a) = €<tanh(#> +tanh(%)) ifj=2,....,k—1
Z(l — e @/t 4 tanh<w>) ifj=k.

2¢

PROOF OF LEMMA C.1: Using the expressions for 7(a;a) derived in the proof of
Lemma 2, we obtain: (i) if a < a;, then 7,(a; a) = e~“~9/* and 7;(a; a) =0 for all j # 1;
(i) if @ > ay, then 7 (a; a) = e71%~9/* and 7;(a; a) = 0 for all j # k; (iii) if a € (a;, ai11)
fori=1,...,k—1,then

—(a—a;)/t _ ,—(2a;1—a;j—a)/t _ _

e e a; a; . a; a

7:(a; a) = =csch ===} sinh | = ,
1 _ e—2(ai+1—a,-)/€ ¢ ¢

‘ B e @in1—a)/t _ o=(aipi+a=2a;)/¢ B n A —a;\ . 0 a-—a;
Tiy1(a; a) = [ o a =csc —7 sin 7 ,

and 7;(a; a) =0 for all j # i, i + 1. Integrating these weights as in Corollary 1, we obtain
the sample weights stated in the lemma. Q.E.D.
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PROOF OF PROPOSITION 4: We first establish that a] > 0 and a} < 1. Suppose, by con-
tradiction, that a} = 0. Differentiating (a) with respect to the leftmost attribute:

- 2z<1 _ sech2<ﬂ)> =0
o 20

for any a \ {a,}. This contradicts the optimality of a} = 0; hence a] > 0. By a similar argu-
ment, a; < 1. Therefore, the first-order approach is valid for all sample attributes.

Second, we show that for any j € {2, ..., k}, the distance a;—a;_, is constant in j. By
the optimality of a}, the first-order condition with respect to a; is

J a’_ at,. —a
v(a) =2¢( sech? 7’1 —sech?’( L)) =0
oa’ 20 20

J

p? B
l/,—(a) = 266_2‘11/( (zeal/l _ 1) _ ZK Sech2<a2 al)
(9611 2/

a1:0

. 242 . . ,
and the second order condition £ fsg‘” < 0 is satisfied. Hence, a} — aj | = aj,, — a; =
a’

(1—-aj—ay)/(k—1)foranyj=2,. J ,k — 1. By Lemma C.1, this implies that for any
j=2,...,k—1, the sample weight is 7; (a ) = 2¢ tanh( 12;,1 f)") Third, the first-order con-
ditions w1th respect to a} and a;, are respectively

s 1 S —al
e’”1/5(2 1/5) = sechz(ﬁ)

; s 1— 4 —
et ) (Sl

Because the RHSs are equal, LHSs must be equal, too. The LHS is of the form x(2 — x),
which strictly increases in x € (0, 1). Hence, a} = 1 — a;, which implies 7,(a’) = 7,(a®).
This, along with a3, ..., a;_, being equidistant, establishes part (i).

The FOC for the leftmost attribute a; pins down the entire a’. We use the trigonometric
identity sech®(x) = 1 — tanh®(x) = (1 — tanh(x))(1 4 tanh(x)) and let x := e~“/* and
yi=1- tanh(lzéfli o) L) to rewrite the FOC with respect to aj as x(2 — x) = y(2 — y),
where x, y € [0, 1]. Because f(z) = z(2 — z) is one-to-one for z € [0, 1], this implies that
x =y, which combined with the fact that a] = 1 — a3, gives the conditions in part (ii). The
equation 1 —e™/¢ = tanh(%) has a unique solution because for aj € (0, 1/2) the LHS
is strictly increasing in a; and it is zero for a] = 0, whereas RHS is strictly decreasing in a}
and it is zero for aj = 1/2. Finally, invoking (11), note that

g 1—2aj 1—-2aj
s\ — s\ — _ oo/t =" — T Y — 1 (a*
Tl(a)_Tk(a)_K(l e +tanh(2£(k_1)>> 2£tanh<2£(k_1)) ;(a%)

forany j=2,..., k — 1. This establishes part (iii). Q.E.D.

PROOF OF PROPOSITION 5: By Proposition 4(i)—(ii), it is sufficient to establish that
laj —1/2] strictly increases in € for k > 1. For k =1, a’ = {1/2} is unique for any ¢ > 0.
For k > 1, a} < 1/2 by symmetry of a*. By implicit differentiation of the equation for

aj(¢) in (11) with respect to ¢ <0 iff 2a3(k — 1) + (2a; — 1)(2 — e™/*) < 0. But

>t
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a < 1/(k + 1) because 1 — e/t — tanh(zi(*szll)) is strictly increasing in a, and strictly

positive for a; =1/(k 4+ 1). Hence, a} < 1/(k+ 1) < (1 —2a3)/(k — 1), which implies

§ §
aj 1—-2aj

T wa-n © 2a)(k—1) <1-2a} < (1-2a})(2 — /")

because 2 — e~/* > 1. Therefore, a; is strictly decreasing in ¢.

Next, we want to show that as ¢ — 0, aj — 1/(k + 1). Substituting the identity
1-aS (k+1)
(1 + tanh(x))/(1 — tanh(x)) = * into equation (11), we obtain 2 — e~/ — ¢ W0 =),
Because from part (i) a$ < 1/(k + 1), as £ — 0 we have e~1/* — 0. Therefore, as ¢ — 0,
1—as (k+1)

it must be that e @ — 2. The term l(k—1)—0ast¢—0and (1—aj(k+1))/((k—
1)) — In(2), hence it must be that 1 — a}(k 4+ 1) — 0 as well. By the second equation in
(11), it follows that a; — j/(k +1) as £ — 0.

Finally, we want to show that as £ — 400, a} — 1/(2k). Equation (11) implies

1— 7a‘i/€
lim ¢ =1

“F fanh 20
20(k — 1)

Because the numerator and the denominator converge to zero as { — +o0o0, we apply
%efaél'/z

TYTA. s .11 — zui(kil) e—a‘i/[,
LCHopital’s rule: lim. ;o = = limMe 00 57—
msech (5r—5) L sech®(

20(k=1)
e /" - 1 and sechz(zi(_kz_ai)) — 1. Hence, lim,_, ., 2?_(];;;) = 1. This implies that a} —
1/(2k) as £ — +o0. By the second equation in (11), it also follows that a; — (2] —1)/(2k)

as £ — —+oo. O.E.D.

— =1. As £ - 400,

1—2a1
2£(k—l))

Calculations for Remark 1. Let v ~ N (v, 07), where o7 > 0 exogenous. The player
has access to signals f(a) = v + &(a) where the noise terms are correlated accord-
ing to the Ornstein—Uhlenbeck covariance (with variance 1 and correlation exp(—|a, —
a;|/¢)). Hence, any two signals (f(a;), f(a,)) are correlated according to the Ornstein—
Uhlenbeck covariance as well: each respective variance is of + 1 and their covariance is
o} +exp(—|a, — a1|/€) = 03 + 0,4(ai, ay). The covariance between v and any f(a) is o7.

Letd; =a;;, — a;. The sample weights for a={ay, ..., a;} are
-1
0'3 +1 O'g + e st - 0'3 4 e~ (it tdg_1)/t
5 ) a.g + efd]/l O_g + 1 . a_g + ef(d2+”‘+dk—l)/l
(0-0 0'0) )
0'3 4 e—(d1+m+dk_1)/2 0'3 + ef(dﬁndrdk_l)/g o 0_02 1

From here, we calculate the posterior variance as

k  k

V() = Z 7;(a) T, (a) (of + el ).

j=1 m=
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For k =2, the posterior variance simplifies to

2

4

—di/t

2 + 1++
Oy

which is strictly increasing in d;. The optimal signals that maximize this posterior vari-
ance subject to d; € [0, 1] are a5 = {0, 1}. Similarly, it is straightforward to verify that the
optimal signals are aj = {0, 1/2, 1} for k =3, a; ={0,1/3,2/3, 1} for k =4, and so on.
The player seeks to sample signals that are as weakly correlated as possible, so that the
overlap between the information that they carry about v is as small as possible.

The following lemma establishes that the player’s expected payoff is single-peaked in
attribute correlation in a simple attribute setting that is close to the common-variance-
common-correlation signal setting in Clemen and Winkler (1985). Suppose that the at-
tribute space is finite: A = {ay, ..., ay}. The player’s value is Zj.\’:] f(a;). The common
variance is o(a, a) = 1 and the common correlation is o(a,a’) = p € (-1/(N — 1), 1) for
any a,a’ € A.

LEMMA C.2: For any sample a that consists of k attributes, the expected loss var[v] — /> (a)
is single-peaked in p with a maximum at p* > 0 such that (1 — p*)*> — kp** =k /(N —1).

PROOF OF LEMMA C.2: We calculate var[v] and #?*(a) for the sample of k attributes
a={ay, ..., ay}. This is without loss since attributes are identically distributed:

var[v] = N var|f(a;)] + 2<];7> cov[f(ar), f(a2)] =N+ N(N —1)p;
, k p 2
- (a) =var|:Zf(a,«)} <1 + (N - k)m)

= (k+k(k — l)p)<1+(N_k)1+(k%1)p> '

The expected payoff from sample a is

(1=p)(N=K)((N-1p+1)
(k—1p+1

The expected payoff V' is increasing in p if and only if (1 — p)> — kp* < k/(N —1). It
is immediate to check that V' is strictly decreasing at any p € (—y,0]. Moreover, V/
is strictly increasing at p = 1. For p > 0, the term (1 — p)? — kp? is strictly decreasing
in p. Therefore, there exists a unique p* at which (1 — p*)* — kp*> = % the payoff is
strictly decreasing (resp., increasing) for p < p* (resp., p > p*). Hence, the expected loss
is single-peaked with a peak at p*. Q.E.D.

V(a) = ¢*(a) —var[v] =

APPENDIX D: PROOFS AND AUXILIARY RESULTS FOR SECTION 4.2

PROOF OF PROPOSITION 10: Without loss, suppose a4 < ap. Given a sample a = {a},
the sample weight for player i is 7(a) := 7}(a) = 0,(a, a;). We first establish that a* > a4
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for any p € (0, 2]. To the contrary, suppose a* < a 4. Then as a increases in (a*, a4), both
77 (a) and 77 (a) increase. The agent’s payoff strictly increases because

Wa@) _ (&TA(a) &Tp(a)) 077'P(a)

da

27"(a) 27%(a)———

da
This is strictly positive for a < a” since for both players, 7* > 0, d7'(a)/da > 0, and
d7'(a)/da decreases in a;. The agent is strictly better off sampling a 4 instead.

Next, we establish that a* ¢ ((a4 + ap)/2, ap) for any p € (0, 2]. The agent’s payoff is
strictly decreasing in a € ((a4 + ap)/2, ap) because d7(a)/da < 0, d°(a)/da < 0 and
0 < 7%(a) < 7”(a). The agent is better off sampling (ap + a.4)/2 instead.

Third, we establish that a* < ap for any p € (0, 2]. Suppose, to the contrary, that
a* > ap. Consider an alternative sample a = ap — (a* — ap). If available, that is, if a € A,
7P (a) = 7"(a*) but 74(a) > v*(a*), hence V4(a) > V4(a*). If a ¢ A, it must be that
a < a,4. But by the argument above, the agent strictly prefers a4 to any such a < a,.
This contradicts the optimality of a*.

Hence, these three observations imply that a* € [a 4, (ap + a4)/2] for any p € (0, 2].

(i) Let p € (0,1]. For any a € [a., (ap + a.1)/2] and any p € (0, 2], the agent’s payoff
V4(a) is strictly decreasing in a if and only if

ap—a\'”’ P
a a a—a >1’
a—ay PG e LA C L

which holds because 0 < a — a4 < ap — a. Therefore, the agent prefers sampling a4 to
sampling any a € (a4, (ap +a,4)/2].

(i) Let p € (1, 2]. At a = a4, the agent’s payoft is increasing because the LHS of the in-
equality in part (i) is zero. Moreover, the first-order condition that pins down the optimal
sample a* € (a4, (ap+ a4)/2) is

e(aP a* N4 _(ap_a*>p—l

AT ay Nt —a,)

As ¢ — 0, the LHS approaches 1. Therefore, it must be that RHS approaches 1 as well,
which implies that a* approaches (ap + a4)/2. Alternatively, as £ — +oo, the LHS ap-
proaches 400, which implies that a* — a 4 so that the RHS approaches +oo as well.

Moreover, as p — 1, the RHS of the FOC converges to 1, whereas the LHS converges
to

*

e a[)zﬂ
* * > 1'
ap—a a 7HA -
e~ T —e ¢
In order for the FOC to hold, it must be that LHS also converges to 1, which implies that
a*r— ay. QE.D.

PROPOSITION D.1: If o satisfies NAP, no sampling is optimal if and only if for any a € A,
" (a)/7"(a) > 2.

PROOF OF PROPOSITION D.1: Fix k. If no sampling is strictly optimal, then in particular
V4({a1}) < 0 for any singleton sample in A4, which is equivalent to 274(a,) — 77 (a;) <
0. Conversely, suppose A 4/Ap is sufficiently close to zero. If sample a* = {ay, ..., a,} is
optimal, by the previous argument all samples of size 1 must attain strictly negative payoff,
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hence n > 2. In particular, 7% (a;) < 77 (a;)/2 for all a; € a*. But then

. ™(a) a(a
o) < Yot ) @)
j=1
hence V,4(a*) < 0 as well. This contradicts the optimality of a*. Q.E.D.

PROOF OF PROPOSITION 11: (i) Without loss, let a4 < a,. Suppose a* ={a,, a,} where
a, € [a,,a4] and a, € [ap, ap]. We show that V,({ai, a:}) < Vai({ai, ap}) < Vai({a4}).
Consider first the difference a,({a;, a}) — ax({a;}), which due to NAP equals

m'(a") 75 (a%) (1 — ol (a1, a2)) = (/:,A ooula,ap)(1— 02 (a,ay)) da) 5 (a") 0u(ap, ).

The term 75 (a*)o,.(a,, a,) strictly decreases over a, € [a,, ap] because its first deriva-
tive with respect to a, is —2e~(“1=2)/¢ csch’((a; — a,)/€) sinh((a, — a,)/(2¢)) sinh((a, +
a, — 2a,)/(2¢)) < 0 for a, > a,. Hence, ay({ai, ap}) > ax({ay, a,}) for any a, > a,.
On the other hand, ¢¥%({a;, a,}) is single-peaked in a, € [a,, ap] with the peak at a, >
(ap + ap)/2, because in the absence of a;, % would be maximized at (a4, + ap)/2.
Moreover, for any a, > a,, y3({ai, ax}) > ¢i({ai,a, — (a, — a,)}). Hence, for any
a, € (ap, apl, ¥5({ai, a2}) > ¥3({ai, ap}). Therefore, a, = a, guarantees higher covari-
ance and lower %, which implies V4 ({al, ar}) <Vi({ay, ap}) =Va({ap}) for any a, > a,,
where the last equality follows from 77 ({a;, a,}) = 0. Now consider the alternative sam-
ple {a}. Note that y3({a.}) = ou(ap,aA)L//P({aP}) < y2({ap}) and 77(a4)m(a4) =
(o4, 2)77(0)) (720001, 0)) = 77(a) 7 (a). Hence, Vi({a,}) < Val{as).
Therefore, {a..} dominates a*. Moreover, any sample of the form {a,} for a, € [a,, ap] is
dominated by {a 4}. Hence, the optimal sample is of the form {a;}, where a; € [a ,, a4].
Differentiating V4 ({a,}) with respect to aj,

ﬁVA(a|)

a|—a, —2(ap+ap) ap ap a
> =2e 7 (et —eT) (e Ci+Cy),
a

where C, = e“A/‘(e"P/‘ — e/t —2elertar)/t < () and Cy = 2el@ater+ar)/t - (), Therefore, the
FOC that uniquely pins down aj, whenever the solution is interior in [a ,, a4], is e it —
—Cy/ Cy. The second-order condition is satisfied as well because

072VA (al)
T
1 *

alzal

aT—&A—Z(gPJr&P) ap ap
4

(e —eF) (" Ci+ Cry2) <0

It can be easily verified that V,({a}) < 0. Moreover, if e24/‘C, + Cy > 0 then V,({a ,}) >
0. Therefore, either V4({a ,}) > 0 > V4({a4}) and V, is single-peaked in a;, or V,({a ,}) <
0 and V, is strictly decreasing in a;. The optimal attribute, if interior, is given by af =
ap—LIn(3(2e@ -2/t - e@r=ap)/t — 1Y) which simplifies to aj = —€In(e~4/* 4 < “P/l‘“fapﬂ)
The case of ap < a , follows by a similar argument.

(ii) Let ap < a,. Equation (15) simplifies to e“i/* — e/t = 1(e/ — ear/t). By implicit
differentiation with respect to £, we obtain

w — Uit a_TeaT/z _ % aun _ @eap/z L4 &p pap/t
ol 14 14 20 2¢
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The function g(x) := xe* is above f(x) :=e* for x > 1, below f(x) for x < 1, and strictly
more convex than f(x). Hence, if e“1/* — e44/t — 1(e%/t — e4r/*) = 0 then “7;{6“?/“ — L ealt —
Letr/t 4 SLetr/t > 0. Therefore, aj(¢) is strictly increasing in £. An analogous argument
applies to the case of a4 < a,.

(iii) We take the limit of af(¢) in (15) as £ — 0*. Let ap < a ,. Applying CHopital’s rule
and then dividing through by e%4/¢, we obtain
22146.2,4/Z + C‘ZP(J,ZIP/‘Z _ QPeQP/‘f ) 22,4 + aPe*(ﬁA*fll’)/l _ QPe*(ﬁA*EP)/Z

R B
Jim a3(¢) = lim Detalt 1 girlt _gmit Jim Dt e @it _ plagapit

which is just 2a ,/2 = a ,. By a similar argument, if a4 < a, then aj(¢) - a4 as £ — 0.
(iv) Let ap < a ,. By similar steps to part (iii),

2a,+ ape @a=ar)/t _ Qpe*(ﬁfrﬁp)/‘f 2a,+ap—a, Ap
B —eat g

zEE]oo 4 (ﬁ) = [EI_POO 2+ e*(ﬁA*flP)/‘Z — e~ (@g—ap)/t - 2
If A, > Ap/2, this limit is interior in [a ,, a 4]. Otherwise, a* is empty. A similar argument
applies to the case of a4 < a,. Q.E.D.

PROOF OF PROPOSITION 12: Withoutloss, fix0 <a, <a, < a4 < ap < 1and let an op-
timal sample be a* = {a,, ..., a,}. We first show that there is no sampling in (a 4, ap]. Sup-
pose first that n = 1 and a, € (a4, ap]. Then ay(a,) = 0,,(a4, a;)74(a,)7" (a;) and its first
derivative with respect to a; is —274(a4) exp((a.4 — 2a,)/€)(exp(a/€) — exp(ap/t)) < 0.
Hence, a; is strictly decreasing over (a4, ap|. Let a}, := (ap + ap)/2.If a; € (a4, a}], oy is
strictly increasing, hence V4 (a,) is strictly decreasing. If a, € (a3, ap], then due to % be-
ing single-peaked at a$, and symmetric around it, 77 (a,) = 7° (a5, — (a; —a$)) and a (a;) =
a;(ay — (a; —a})). Hence, Vy(a,) < Va(ay, — (a) —a})). Next, suppose n > 2 and a, > a 4.
Consider first the difference as(a*) — ax(a* \ {a,}) = (a*)70(a*)(1 — o2, (a,_1, a,)),
which equals

Oou(@4, a,)7) (a%) (/afm Oou(a,a4)(1— 0., (a,a,1)) da).

n—1

The term 0,,(a4, a,)7"(a*) is strictly decreasing in a, because its first derivative with
respect to a, is —2exp((a4 — a,_;)/€) csch*((a,_, — a,)/€)sinh((a, — a,)/¢) sinh((a, +
ap—2a, 1)/t) <0ifa, , <a, and —2exp((a, + a4)/¢)/(exp(a,_1/¢) + exp(a,/€))* <0
if a,_; > a,. Therefore, a,(a*) is strictly decreasing in a, € (a4, ap]. On the other hand,
from the single-player benchmark we know that ¢ (a*) is single-peaked in a, € (a,_1, ap],
with a peak at a) > (a, + ap)/2 because in the absence of the rest of the sample, and in
particular a,_;, it would be maximized at (a, + ap)/2. If a} > a4, then any attribute in
(a4, a}) is dominated by a 4. Moreover, V is either single-troughed in a,, with a trough
to the right of a’, or strictly decreasing in a, € (a4, ap]. Hence, V4 ((a* \ {a,}) Ua,) >
VA((a* \ {an}) U C_ZA)

Second, to show that there is no sampling in [a ,, a,) for n > 2, we suppose by contra-
diction that a; < a,. For 7{ (a*) # 0, it must be that a, > a,. Differentiate /, with respect
to a;, we obtain

4e(2cosh( =% 1 —cosh 2722 | ) csch?( "2 Y ginn2( 2= %\ - o
¢ ¢ ¢ 2t
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for any a, < a, < a, because a, — a, > a, — a,. Hence, V, strictly increases in a,. Finally,
n =k by Corollary 9. Q.E.D.

APPENDIX E: EXTENSIONS AND ADDITIONAL RESULTS
E.1. Examples for Section 5.1

EXAMPLE E.1—Inference reversal due to conflicting attributes: Let A = [a, a] and
w(a) =1 for all a € A. The attribute covariance is oy,(a, a’) = (a — a)(a’ — a) and the
prior mean is u(a) =0 for a, a’ € A; note that oy,(a, a) = 0. This structure corresponds
to a linear attribute mapping f that goes through the realization f(a) =0 for a € A and
the slope of which is not known (Figure E.1). Attribute variance increases quadratically
with distance from a. Without loss, let @ < (a + a)/2. The correlation between any two
attribute realizations is perfect because

corr(f(a), f(d')) = Tin(e, @) = {
\/ oin(a, a) o (a', @)

Therefore, discovering one more attribute resolves all uncertainty about f.

Suppose a # a is discovered. The uncertainty about v prior to the discovery of f(a)
is ;(a — a)*(@ + a — 2a)*. The project is more uncertain the greater is the mass of at-
tributes (a — a) and the farther a is from the median attribute (a + a)/2, that is, the more
peripheral the known attribute a is. If & is exactly the median attribute, the uncertainty
about v is zero because the uncertainty about [a, a] cancels that about [a, a]. Given a
singleton sample a = {a}, by equation (6) the expected realization of any other attribute
aisE[f(a)| f(a)]=7i(a;a)f(a) = (a—a)f(a)/(a — a). Hence, from equation (8), the
sample weight is 7, (@) = 3(a — a)(a+a —2a)/(a — a), which is strictly negative for a < a.
That is, a high realization for a < a implies low realizations for attributes in [a, a], which
is the majority of the attributes. Therefore, the sample weight of attributes to the left of a
is negative even though all attributes are desirable.

+1 if sgn(a — a) =sgn(a’ — a)
—1 if sgn(a — a) #sgn(a’ — a).

EXAMPLE E.2—Inference reversal due to the presence of other sample attributes: Let
A =10,1], w(a) = 1, and the squared-exponential covariance o,(a,a’) = e~ “*""/** for
all a,a’ € [0, 1]. Lemma E.3 shows the possibility of a reversal in the direction of infer-
ence when going from a one-attribute sample to a two-attribute one. Due to the positive
attribute correlation, any singleton sample has a strictly positive sample weight. But in

L

FIGURE E.1.—Linear attribute mapping corresponding to oy;,.
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a two-attribute sample, one of the attributes can have a strictly negative sample weight,
even though the sum of the sample weights for the two attributes must be strictly positive.
Lemma E.3(ii) establishes that such a negative sample weight arises if and only if the two
attributes are on the same side of the median attribute and attribute correlation is high.
The attribute with a negative sample weight is the one farther away from the median
attribute.

LEMMA E.3: Let 05(a, a') = e and w(a) =1 forall a,a € [0, 1]. For any sample
a; ={a}, 71(a;) > 0. For any two-attribute sample, a, = {a,, a,} such that 0 < a; < a, < 1:
(i) the sum of sample weights is always positive: T1(a,) + m(ay) > 0;
(ii) one of the attributes is assigned a strictly negative if and only if a, and a, are on the
same side of the median attribute and { is sufficiently large.

PROOF OF LEMMA E.3: (i) Let g(a) := erf(%) + erf(‘). First, note that g(a) > 0 be-
cause a; € [0, 1], £ > 0 and erf(x) > 0 for any x > 0. For a singleton sample, equation (8)
simplifies to 7,(a;) = £,/mg(a,) > 0. Now consider a, = {a,, a,}, where a, < a,, and let
d :=a, — a;. Applying Lemma 1, the sample weights are given by

4a; 2

1 _dayn d
@) = eve E esen( ) gla) - g(a)).

which is positive if and only if e*'/“ g(a ;) — g(a_;) > 0. Then the sign of the sum 7,(a) +

7,(a) is determined by the sign of g(a;) + g(a,), which is strictly positive for any a,, a, €
[0, 1]. Hence, at least one of the attributes has a strictly positive sample weight.
(ii) Taking the limit of these sample weights as £ — +oc0, we obtain

. 2a, — 1 . 1—-2a
dm n@) =57y [lim n@) =575
If a; < ay <1/2, then lim,_, ,, 7(a2) < 0. If 1/2 < a; < a,, then lim,_, ;,, 72(a;) < 0. So,
the conditions are sufficient. To show that they are also necessary, suppose first a; < 1/2 <
ay. Then e?'/? g(a;) — g(a_;) strictly increases in the distance d for any a; € a, and it is
zero for d = 0. Second, suppose that a; < a, < 1/2. Then 7((a,) as a function of ¢ is
single-troughed in £ and crosses zero only once in ¢, say at £ = £. On the other hand,
7,(a,) as a function of £ is decreasing and strictly positive in £. Hence, for 7,(a;) to be
strictly negative, it is necessary that £ > £. Q.E.D.

E.2. Binary Decision and Reservation Values

PROPOSITION E.1: Let D ={0, 1} and for each i = A, P, u(1, v;) = v; and u(0, v;) =r;,
where r; € R is a known outside option for player i. The agent’s expected payoff from any
sample a € Ay is

VA<a)=rA+(V(¢_rA)q>(”5—rP>+ a(a) d)(v{;—n}),

Jau@’  Ja@ Naa)

where oy and o, are defined as in Theorem 2.
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PROOF OF PROPOSITION E.1: Let p(a) denote the correlation between wp(a) and
v4(a), the joint distribution is Gaussian:

() i 527

CLAIM 1: Forany rp € R,

v'(a) — vy Pp(a)
| ———— Vf; + p(a) (VA(a) — Vaq) —7rp
F(r'(@) | v"(a) > rp) = ( ‘!fA(a) ) l/j‘!f(A()‘ﬂl)1 =
pla — a
“”A(a)@( Ve (@) > g

PROOF: Let x,, x, be jointly Gaussian with means w,, u,, variances o7, 7, and covari-
ance oy,. Let fi, f, and Fi, F, denote their respective pdf and cdf. Then

fxilx>%)= Flwh(xz >X)f(x1 ] x2>X)
ey el RELCIEOVICOLE
_ Silx) =
= TQ()_C)(l — Foy, (%))

The first line multiplies and divides by Pr(x, > x). The second line rewrites Pr(x, >
X)f(x; | x, > X) using the joint density and the observation that f(x;,x;) = f(x, |
x1) fi(x1). The last two lines use the conditional distribution of x, | x;. But

o
X | x4 NN(,U«z + P;z(xl — ), (1— P2)022>
1

and p = 7= Therefore we can substitute in the expression for F,,|,, to obtain

21x1

% P (%1 — 1)
L) (e T

1 — Fy(x) o/ 1 — p?

fxilx=2%)=

Switching back to our variables of interest, let x; :=v4(a) ~ N (v{', % (a)), x, := v’ (a) ~
N @, y3(a)), and X := rp. Therefore,

P @l @)= )
vi(a) — v P yr(a) LA (g) — pA
_ () N A M
= | O

Q.E.D.
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Using the claim, observe that:
Pr(v”(a) = rp)E[v"(a) | v (a)
=] =02 [ @ @ @ = ) dr @

Yr(a)
P p(a) 4 A
o A A A vy +p(a) (V (a)_Vo)—”P
vi(a) (vi(a)—y i 4(a) A
. m(a)‘b( V(@) >¢ v’ (a)

Yr(a)y/1—p(a)

vf + p(a)rp(a)x — ) i

=/°°(x¢A(a)+VOA)¢(x)cb( B Ao
- r(a —p*(a

o0

(a) V()

where in the last line x : . From Owen (1980), we have the following Gaussian
identities (resp., numbered 1() 010 8 and 10,011.1 in Owen (1980)):

/_: & (x)®(a + bx) dx = @(\/ﬁ),

/_:x¢(x)<b(a+bx)dx= \/1111)24)(\/11[)2),

Letting a := (v§ — r»)/(¥p(a)/T = p*(a)) and b := p(a)//T - p(a),
Pr(v”(a) = 1p)E[v"(a) | v"(a) = rp] = v5'® (Vlﬂ (a) ) +p(a)¢A(a)¢< Yp(a )P)

Therefore, the agent’s payoff from sample a simplifies to

V,(a) = Pr(v” (a) <rp)rA+v(fCI><l; @ ))+p( )a(a )¢( (r))

=ra+ (v —ra)® (; ( )>+p( Jaa )¢(¢ (ar)>

Finally, note that cov[»"(a),v"(a)] = cov[+"(a),v4] = ay(a) because 7/'(a) +

YT (@)o(a,a)) = 74(a;). Substituting Wr(a) = /a;(a) and p(a)y4(a) =
ay(a)//ai(a) into V,(a), we obtain the desired expression. Q.E.D.

E.3. Noisy Observations of Attribute Realizations

For any given sample a € A, and a; € a, the player obseves a noisy observation
y(a;) = f(a;) + €(a;), where the noise term e(a) ~ N (u’(a), n*(a)) is drawn indepen-
dently across attributes. Note that the distribution of noise term can vary across attributes;
the term u” captures obervational bias and n captures observational noise. Figure E.2 il-
lustrates extrapolation across noisy observations of a Brownian sample path.
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08— Driftless Brownian Motion

®  No noise

® ;=025
— — No noise
— — =025
True path

0.6 —

0.4 —

02— I

-02 — =~ -1

0.4

06 \ \ \ \ \ \ \ \ \ |
0 0.1 0.2 03 04 05 06 07 08 0.9 1

FIGURE E.2.—Extrapolation across a standard Brownian motion for A = [0, 1], a = {1/4,1/2,3/4}, and
w(a) =0 for all a € [0, 1]. There is no observational bias, that is u’(a) = 0 for all a € A, whereas the observa-
tional noise is n(a) = 0 for all a € A (red) and n(a) = 0.25 for all a € A (blue).

COROLLARY E.4: The set of single-player samples does not depend on the observational
bias u°.

PROOF: Fixasample a={ay,..., a;} € A;. The observations are distributed according
to

e R N A S A
LN : 7 :
y(ak) M(ak)+ﬂo(ak) 0'(611;,611) g-(ak,ak).—l— nz(ak)

Let 2(7) be this new covariance matrix. Following Lemma 1, 7;(a; a) is now the (1, j)th
entry of the matrix (o (a;,a) --- o(ax, a))2~'(n). The posterior variance is as in equa-
tion (10), where 7;(a) is derived from 7;(a; a) above as in Lemma 1. By the same argument
as in that in Theorem 1, u” enters neither the posterior variance nor the single-player
sample. QE.D.

EXAMPLE E.5—Noisier observations, more uncertain single-player sampling: Con-
sider the Brownian covariance o;,(a, a’) = min(a, a’) over A = [0, 1]. That is, attribute
uncertainty increases from left to right and attribute a = 0 is the least uncertain attribute.
Let w(a) =1foralla € [0, 1] and k = 1. The observations are of the form y(a) = f(a) +e,
where € ~ N (0, n*). For any sample a € [0, 1], the posterior variance *(a) naturally
decreases with the amount of noise n?. The optimal sample a*(n) is pinned down by
a*(n)(3a*(n) —2) —4(1—a*(n))n* = 0. It can be easily verified that the optimal attribute
without observational noise is a*(0) = 2/3. By implicit differentiation with respect to 7,

‘9“;;") = 3‘;”((37;’27(72? - > 0 for a* € (2/3,1) and n > 0. Moreover, a*(n) is strictly increasing




14 ARJADA BARDHI

at 7 = 0. The higher n? is, the further away the single-player attribute is from a = 0. That
is, in the presence of greater observational noise, the player samples attributes that are ex
ante more uncertain.

REFERENCES

CLEMEN, ROBERT T., AND ROBERT L. WINKLER (1985): “Limits for the Precision and Value of Information
From Dependent Sources,” Operations Research, 33 (2), 427-442. [5]

OWEN, DONALD BRUCE (1980): “A Table of Normal Integrals,” Communications in Statistics — Simulation and
Computation, 9 (4), 389-419. [12]

Co-editor Barton L. Lipman handled this manuscript.

Manuscript received 16 April, 2020; final version accepted 18 October, 2023; available online 18 January, 2024.


https://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282024%2992%3A2%2B%3C1%3ASTASLA%3E2.0.CO%3B2-J
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/clemenwinkler1985&rfe_id=urn:sici%2F0012-9682%282024%2992%3A2%2B%3C1%3ASTASLA%3E2.0.CO%3B2-J
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Owen81&rfe_id=urn:sici%2F0012-9682%282024%2992%3A2%2B%3C1%3ASTASLA%3E2.0.CO%3B2-J
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/clemenwinkler1985&rfe_id=urn:sici%2F0012-9682%282024%2992%3A2%2B%3C1%3ASTASLA%3E2.0.CO%3B2-J
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Owen81&rfe_id=urn:sici%2F0012-9682%282024%2992%3A2%2B%3C1%3ASTASLA%3E2.0.CO%3B2-J

	Appendix C: Proofs and Auxiliary Results for Section 3.2
	Calculations for Remark 1

	Appendix D: Proofs and Auxiliary Results for Section 4.2
	Appendix E: Extensions and Additional Results
	Examples for Section 5.1
	Binary Decision and Reservation Values
	Noisy Observations of Attribute Realizations

	References

