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This document contains additional derivations, computational details, and addi-
tional simulation results to supplement the main paper. All equations in this supple-
ment are prefixed by “S”. Numbers without prefix refer to objects in the main paper.

APPENDIX C: A SIMPLE MODEL OF QE

THIS IS A SIMPLIFIED VERSION of the New Keynesian model of bond market segmentation
that appeared in Ikeda, Li, Mavroeidis, and Zanetti (2020) and is based on Chen, Curdia,
and Ferrero (2012). The economy consists of two types of households. A fraction w, of
type “r” households can only trade long-term government bonds. The remaining 1 — w,
households of type “u” can purchase both short-term and long-term government bonds,
the latter subject to a trading cost ¢;. This trading cost gives rise to a term premium, that is,
a spread between long-term and short-term yields, that the central bank can manipulate
by purchasing long-term bonds. The term premium affects aggregate demand through
the consumption decisions of constrained households. This generates an unconventional
monetary policy channel.

The transmission mechanism of monetary policy is obtained from the equilibrium con-
ditions of households and firms in the economy. Households choose consumption to max-
imize an isoelastic utility function and firms set prices subject to Calvo frictions. These
give rise to a Euler equation for output and a Phillips curve, respectively. Equation (1) in
the paper can be derived by combining those two equations. I will derive the Euler equa-
tion in some detail in order to illustrate the origins of the QFE channel. The Phillips curve
derivation is standard and is therefore omitted.

Up to a log-linear approximation, the relevant first-order conditions of the households’
optimization problem can be written as
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where o is the elasticity of intertemporal substitution, ¢ is the steady-state value of ¢,
hatted variables denote log-deviations from steady state, ¢, is consumption of household
J €{u, r}, r, is the short-term nominal interest rate, and R, , is the gross yield on long-term
government bonds from period ¢ — 1 to z." Goods market clearing yields

Vi=w,C + (1 —-w,)e, (S-4)
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where y, is output, and I have assumed, for simplicity, that in steady state ¢* = ¢", which
implies ¢* = ¢" = y. Multiplying (S.1) and (S.3) by (1 — w,) and w,, respectively, and
adding them yields

)A"t = Etj}H»l - U'Ez[(l - wr)fz + wréL,tﬂ - 7Tt+1]- (S~5)

Subtracting (S.1) from (S.2) yields

Et(éL,tJfl) = ;'[ + %2[, (S6)
which establishes that the term premium between long and short yields is proportional to
;. Substituting for E,(R; 1) in (S.5) using (S.6) yields

)A)t = Elj}l+1 - 0'<’A’z + wrﬁ&) + O'Et(ﬁt+l)~ (S-7)
Next, assume that the cost of trading long-term bonds depends on their supply, b, ,, that
is,

Zz =pbr, pc>0.

Substituting for £, in (S.7) yields the Euler equation

)A)z = Etj}t+1 - U(’A’t + wrrggp{BL,t) + O'Et(771+1)- (S~8)

The second equation is a standard New Keynesian Phillips curve that links inflation to
output:

7, =8E, (7)) + @) + e, (S.9)

where 6 is the average discount factor of the two households, @ > 0 is a parameter that
depends on the degree of price stickiness (the Calvo parameter), and ¢, is proportional
to an i.i.d. technology shock. Substituting for y, in (S.9) using (S.8) yields

m =0+ o0w)E(711) +WE (Y1) — wa‘(f’t + w,rggpé«BL,l> + &1p. (S.10)

Finally, at an equilibrium in which inflation and output depend only on the exoge-
nous shocks &, = (&y;, £5), which are the only state variables in the system, and when the
shocks have no memory, E, () and E,(J,,1) will be equal to the corresponding uncondi-
tional expectations, which are constants.” Therefore, (S.10) reduces to equation (1) in the
paper by setting ¢ = (6 + ow)E(7,11) + wE(J11), B=—wo, I, =r, — r", where r" is the
discount rate of the unconstrained households, and ¢ = w,ﬁp (B, and dropping the hat
from b; , for simplicity. The parameter ¢ depends on the fraction of constrained house-
holds, w,, and the sensitivity of the term premium to long-term asset holdings, ﬁpg.

2Such an equilibrium always exists if the volatility of the shocks is not too large; see Mendes (2011).
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APPENDIX D: FORWARD GUIDANCE RULES
Debortoli, Gali, and Gambetti (2019) discussed the following two inertial policy rules:

re=max{0, ¢,7_1 + (1 — ¢,)(p + b7 + Ay}, (S.11)

and
r, =max(0,r}), (S.12a)
rr=¢r + 1 —¢)(p+ dam + d)Ay), (S.12b)

where I have set the inflation target to zero, and Ay, is output growth. Both of these
rules are nested within equation (19) of the CKSVAR, with Y}, = (7, Ay;)'and Y,, =1,.
Rule (S.11) sets the coefficients on Y,,_; and Y7, , as By = ¢, and B;, = 0, respectively,
while rule (S.12) sets them as B,, = 0 and B3, = ¢,. Debortoli, Gali, and Gambetti (2019)
argued rule (S.12) is consistent with forward guidance, because it will tend to keep interest
rates at zero for longer than rule (S.11). It also ensures policy reaction is the same across
regimes, and so it is consistent with the ZLB irrelevance hypothesis that the paper put
forward.

Reifschneider and Williams (2000) proposed a slightly more elaborate policy rule for
forward guidance:

=" —aZ, Z,=Z, i +d,d =r—r"", (S.13a)
r, =max(r, 0),
r;l"aylor =p + qbw,n,l + d)yyt? (Sl3b)

where y, is the output gap, and the inflation target is zero. Differencing (S.13a) yields

* % Taylor Taylor
rr=r A —a(r - ).

Taylor

Substituting for ;" using (S.13b) yields
r;k =r_, + b Am + ¢yAyt —ar+a(p+ ¢.m+ ¢yyz)
=ap —ar,+ (1 + a)((bw'ﬂ't + ¢sz) - (d)wﬂ-t—l + (l)yyt—l) + rt*—l'

This is again nested within equation (19) of the CKSVAR with Yy, = (7, y.), Y2 =
ro, Y =rf Xy =, m_1, ), Xo =1, X5, =r),, and parameters Ay = —(1 +

=
a)(d’m ¢y), Ap=a, A§2 =1,By= (ap, —¢a, _¢y)a By =0and B§2 =1

More examples of forward guidance policy rules that are nested within the CKSVAR
are discussed in Ikeda et al. (2020).

APPENDIX E: COMPUTATIONAL DETAILS
E.1. Likelihood

To compute the likelihood, we need to obtain the prediction error densities. The first
step is to write the model in state-space form. Define

y:

8= . ) Y: =\ v* 5
’ (k+1)x1 Y,
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and write the state transition equation as

Fl(st—l, U ‘p)
Y
se=F(si1, u ) = : ) (S.14)

Yi-p+1

Ele + ETY? + ult: EDt(ngj + Ezyj + Uy — b)
max(_b, Co X, + C X, + uy)

Cth + 6;7? + Uy,

F (st—la Uy, t#) =

and the observation equation as

Yi= (T Okxis(o-tyksny) Si- (S.15)
Next, I will derive the predictive density and mass functions. With Gaussian errors, the
joint predictive density of Y, corresponding to the observations with D, =0 is

1 — s
fo(Yils, 1, ) = Q|2 exp{—i tr((Y, -CX,—-C Xt)

% (Y,—CX, E*Yf)/ﬂl)}.

(S.16)
At D, =1, the predictive density of Y;, can be written as
L 1 b
fl(Yltlst—h l//) =[5 : exp[—z(Yn - ,U«n) (=" 1(Yn - Mlt)i|7 (5-17)
= Bb + (C, — BCy)X, + (C, — BC,) X, (S.18)
— S I -1
B i=0,+687=(I -B Q( k~,>,
1 1.2 ( k-1 N) (8.19)
g: lewz_zl — E,
where 01,2 = Q]] — Q]Zw;;ﬂm, and 7 = N W NCXt,
M2t|Y1[, Si—1 7™~ N(/JQ;, ’T%) Wlth (SZO)

o =TS BT (Vi — pas), T2 = 7y (1- 725/51_13). (S.21)

Hence,

b—CX,—C. X —
Pr(Dt::llY]t,Stfl’ ¢):(D( 244t 2“7t M2t>.

T2

(S.22)

In the case of the KSVAR model, there are no latent lags (6* =0,C=C ), so the
log-likelihood is available analytically:

10gL(¢) = Z(l - Dt) long(Ytlst—b t#)

t=1
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T
+ 3D tog( AlYils ¢)¢(m)), (5.23)
t=1 T

2

where fy(Y,|s,_1, 0) and fi(Y1,|s,_1, 6) are given by (S.16) and (S.17), respectively, with
C =0.

The likelihood for the unrestricted CKSVAR (6* # () can be computed approximately
by simulation (particle filtering). I provide two different simulation algorithms. The first
is a sequential importance sampler (SIS), proposed originally by Lee (1999) for the uni-
variate dynamic Tobit model. It is extended here to the CKSVAR model. The second
algorithm is a fully adapted particle filter (FAPF), which is a sequential importance re-
sampling algorithm designed to address the sample degeneracy problem. It was proposed
by Malik and Pitt (2011) and is a special case of the auxiliary particle filter developed by
Pitt and Shephard (1999).

Both algorithms require sampling from the predictive density of ?; conditional on
Yy, D, =1, and s, ;. From (26) and (S.20), we see that this is a truncated Normal with
original mean u}, = C X, + 6:7? + o, and standard deviation 7,, where w,,, 7, are given
in (S.21), that is,

H(Y5Yi, D=1, 5.1, %) = TN(u,, 2, Y, < b). (S.24)

Draws from this truncated distribution can be obtained using, for instance, the procedure
in Lee (1999). Let &Y ~ U[0, 1] be i.i.d. uniform random draws, j =1,..., M. Then, a
draw from Y,,|Yy,, 5,1, Y,, < b is given by

Vol = i + Tchl[ f”cp(i"“”)] (S:25)

T2

ALGORITHM 1—SIS: Sequential Importance Sampler A }

1. Initialization. For j=1: M, set W) =1and s, i(yf), el y’pr), withy' = (Y}, Ya0)',
fors=0,..., p—1.(In other words, initialize Y;’_S at the observed values of Y;, _;.)

2. Recursion. Fort=1:T:
(a) For j=1:M,compute the incremental weights

fYilsl i, ¥) if D, =0,

i j _ : ,
w,_y, = p(Yils,_y, ) = {fl(Ynls;’_p $)Pr(D, = 1Yy, s, ¢) if D, =1,

where fo, fi, and Pr(D, = 1|Yy,, s,_1; ) are given by (S.16), (S.17), and (S.22),
resp., and

1 M .
S = M ;wﬁlhmjl'

(b) Sample s] randomly from p(st|sf_1, Y,). Thatis, sl = (yﬁ, y{_l, R yf,p), wherey] =
<*() <) .

(Y, Y, Yand Y, is a draw from f,(Y;|Yy, D, =1,s_,, &) using (S.25).
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(c) Update the weights:

Wj

I
3. Likelihood approximation:

T
log p(Yr|¢) = ZlogS,.

t=1

If the draws §f’) are kept fixed across different values of i, the simulated likelihood in
step 3 is smooth. Note that when k =1 and Y, = Y», (no Y}, variables), the model reduces
to a univariate dynamic Tobit model, and Algorithm 1 reduces exactly to the sequential
importance sampler proposed by Lee (1999). A possible weakness of this algorithm is
sample degeneracy, which arises when all but a few weights W’ are zero. To gauge possible
sample degeneracy, we can look at the effective sample size (ESS), as recommended by
Herbst and Schorfheide (2015):

BSs, = M (S.26)

1,2
— Z(W’j
M =
Next, I turn to the FAPF algorithm.

ALGORITHM 2—FAPF: Fully Adapted Particle Filter A
1. Initialization. For j=1: M, set s = (yO, e Y ), with Lo = (Y, Yao), for s =

0,..., p— 1. (In other words, initialize Yz’_s at the observed values of Y,,_;.)
2. Recursion. Fort=1:T:
(a) For j=1:M, compute

fO(Ytls{fp ‘p) 4 if D, =0,
fi(Yels_, ¥)Pr(D, =1|Yy,,s_,¢) ifD,=1,

where fy, fi, and Pr(D, = 1|Yy,, s,_1; &) are given by (S.16), (S.17), and (S.22),
resp., and

w{—l|t = P(Ytlst ¥) =

J
t—1|t

E : J
wt—1|t
j=1

w
7Tt—1|t =

(b) For j=1:M, sample k; randomly from the multinomial distribution {j, m,_ 1|[}

Then, set §/_, = s, .- (This applies only to the elements in s/_, that correspond to

X}, since all the other elements are observed and constant across all j. That is,
*(k )

tl_(Ytl""y]p) y;—s—( 2ts) s=1, "’p)
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(c) Forj=1:M, samp]e s! randomlyfrom p(s,|§f_1, Y,). That is, sl = (yﬁ, ...,yt;p),
where y = (Y[,?:l(l)) and 7;(]) is a draw from f,(Y;|Yy, D, =1,5_,, ) using
(S.25).

3. Likelihood approximation:

T M
A 1 »
In p(Yrlp) = Zln(ﬁ Zwim)-
=1 j=1

Many of the generic particle filtering algorithms used in the macro literature, described
in Herbst and Schorfheide (2015), are inapplicable in a censoring context because of the
absence of measurement error in the observation equation. It is, of course, possible to
introduce a small measurement error in Yy, so that the constraint Y, > b is not fully
respected, but there is no reason to expect other particle filters discussed in Herbst and
Schortheide (2015) to estimate the likelihood more accurately than the FAPF algorithm
described above.

Moments or quantiles of the filtering or smoothing distribution of any function 4(-)
of the latent states s, can be computed using the drawn sample of particles. When we
use Algorithm 2, simple average or quantiles of 4(s;) produce the requisite average or
quantiles of A(s,) conditional on Y7, ..., Y, (the filtering density). For particles generated
using Algorithm 1, we need to take weighted averages using the importance sampling

weights W,. Smoothing estimates of /(s]) can be obtained using weights W;.

E.2. Computation of the Identified Set
Substitute for 7 in (39) using Proposition 3 to get

B= (1= - 53(9/12 - szﬁ) (Qn - leﬁ/)_l)_lﬁ. (S.27)

For each value of £ € [0, 1), the above equation defines a correspondence from R*~! to
M1, The range of B can then be obtained numerically by solving (S.27) for 8 as a function
of the reduced-form parameters and ¢ for each value of £, and gathering all the solutions
in the set.

Rearranging (S.27) yields

B= B0 — 0B (@ - 00B) B+ (1- 9B (5.28)
Note that
(Qn — leEY1 =05 +9,/ Q1 - FQ#QM)*]EQI—]{
Hence,
(Q;z - szﬁ/) (Qll - leﬁ/)i]
(20,0501 — 0B Q7 Q1) B O
1- B/QﬁlQlZ
(Q/IZ - QZZE/)QHI + 0,0 (leﬁ/ﬂﬁl - E/Qfllﬂlzlk_l)
1- E/Qﬁlﬂlz

= (Q), — 0B +
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Substituting this back into (S.28), we get
— (Q/lz - szﬁ,)ﬂﬁl + Q07 (leﬁﬂﬂl - E/Qﬁlﬂlzlk—l)

8= B+ (1—&)B.
B=¢B L Fa 0, B+(-6B

Multiplying both sides by 1 — E/Ql‘llﬂlz yields
B—B Q0B = B0, — £BOLE O B + €800 0,8 O B
— EBB O 000 B+ (1-6)B(1 - B O Q).
Rearranging, we have
B =B, B+ Q,BB+(1— 9B —(1—&BB O
+ BB O BEQ,OQ — BB O BEQ, — BB Q00,0 BE
= (BQLO + (£Q,B+1 - €)L)B
+ BB O (9,95 Qi — Qo) [y — 01200,07))BE— (1 — £)Q).

This can be written as

B—AB+BBb=0, (S.29)
where
b= =07 (20 Qi — Q)1 — 00,0, BE — (1 — £)Q,) and
A= B0 + (§Q,B+ 1 — &)y
Define

z:=b'x and w:=bx,
where b, b, =1 and B’Ll; = 0. Hence, rewrite (S.29) as
B— AB(BB) 'z — Abyw+b(BB) 2+ bLwz =0,
Premultiply by 5; to get
BB — B, AB(BB) 'z — B, Abyw+wz = 0.

Solve that for w to get

with

provided that det(Cy(z)) # 0.
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Next, premultiply (S.29) by &’ and substitute for w to get
BB —bAb(b'b) "z — b Ab, Cy(2) 'er(2) + 2 =0. (S.30)

Now, notice that Cy(z)™' = Cy(2)*¥/det(Cy(z)), where C*¥ is the adjoint of a square
matrix C. Moreover, since Cy(z) is of dimension k — 2 and its elements are linear in z,
det(Cy(z)) is a polynomial in z of order at most k — 2, and the elements of Cy(z)*¥ are
polynomials in z of order at most k& — 3. For k =2, w is empty, so (S.29) is simply a
quadratic in z. When k > 2, det(Cy(z)) is nonzero and we can multiply (S.30) by it to
get

0=b'Bdet(Co(2)) + b Ab(b'b) " 2 det(Cy(2))
— b/ Ab, Cy(2)ei(z) + det(Cy(2)) 2. (S.31)

This is a polynomial equation of order k and has at most k solutions, denoted z;, say.
Then, the solutions for B8 are given by

Ei = [5(5/5)_17 l;l_] (C()(Zi)Zilcl (Zi)>
b(b'b) ™ zi + b, Co(z:) " er(2). (S.32)

Below, I give some special cases. B
Case k = 2: In this case, w is empty, B is a scalar, and the equation (S.29) is a quadratic

B—AB+Bbh=0.

- ~— ) _ I
If A> —4Bb > 0, the two real solutions are B, , = w.

Case k = 3: In this case, w is a scalar, and the equation (S.31) can be written as a cubic
in z, that is,

Co(2)b' B — Co(2)b' Ab(b'D) ™'z — b Ab ¢ (2) + Co(2)2> =0, (S.33)

since Cy(z) is a scalar linear function of z. It can be shown that one of the roots of (5.33)
satisfies (,Q;' B = 1, which implies det(€;, — Q1,8 ) = 0, and hence violates the equation
for ¥ = (), — 0nB )(Q; — QB)7", so it is not a valid solution. The root in question
is

0,0,/ (b b’ Ab — bb' Ab.)
Q,,0;/b, (b'b) '

21

We can then factor out a term z — z; from (S.33), and obtain the remaining two roots
from a quadratic equation. Therefore, there will be zero or two solutions for 3, as in the
case k =2.

An algorithm for obtaining the identified set of the IRF (40) is as follows.
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ALGORITHM 3—ID set: Discretize the space (0, 1) into R equidistant points.
Foreach r =1: R, set §, = 35 and solve equation (S.30).

1. If no solution exists, proceed to the next r.

2. If 0 < q, < k solutions exist, denote them z;,, and, foreach i =1: q,,

-1

(a) derlve Bl r from (S 32) yl ro (912 - QZZBZ r)(Qll - leﬁz r)_ 22 ir =
\/(_yi,r’ 1)9(_7”’ 1) ’ and —=1,ir = (Ik—l’ _:Bi,r)Q(Ik—l’ _IBi,r) ’
(b) forj=1:M, _ _
i. draw independently &, ;, ~N(0,E,;,) and u; , ~N(0,Q) forh=1,..., H;
ii. for any scalar s, set

u{t,i,r(g) = (kal 317’)/zr) (‘c’%tlr _Ei,rg)7
uét,i,r(g) = (1 - 7i,rBi,r)_ (g - 7i,r‘§]t,i,r)7

and compute Y, (q) using (24)- (25) with ut .+(s) in place of u,, and iterate

forward to obtain Y}, . .(s) using u;,, computed in step i. Set s =1 for a one-

tlr

unit (e.g., 100 basis points) impulse to the policy shock €,,, or s = Z;’i’r fora
one-standard deviation impulse;
(c) compute

M

RE,1,(8) = 37 D (Vinir($) = Vi 0).

j=1
The identified set is given by the collection of IRF), ,;,(s) overi=1:q,,r=1:R, and the
single point-identified IRF at ¢ = 0.

E.3. IRFs and Local Projections

I will briefly discuss the difficulty in getting a local projection-like representation of the
IRF in a dynamic Tobit model, which is a univariate CKSVAR(1). The model is given by
the equations

Yi = pyi1 + p min(y,_1 — b,0) +u,
=py,_1 + p*Dt—l(yt*—l — b) +u,, D, = 1{yt* < b},
ye=max(y;, b) = (1 -D,)y;.

Hence,
* * b—py.—p*D/(y; — b
Ei(yer) = (py: + p"Di(y;] —b))<1 _(D( l o b ))>
+ ad)(b — oy =P Dy — b)>.
g
In a linear model (p* =0, b = —o0), the one-period-ahead impulse response is p, which

coincides with the coefficient on y, in the local projection E,(y..1) = py:. In that case, the
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coefficient p corresponds to both = and E( Vsl =1,y 1) — E(Yia|u, =

0, y._1). None of these properties hold in the dynamic Tobit model. For example, if we
go with 0= a5 our definition of the impulse response, we will not be able to ob-

duy
tain it from the slope of the conditional expectation function E,(y,;) with respect to
¥;. One problem is that the function E,(y,,;) is non-differentiable at u, = b — py, | +
p*D,_1(y;, — b), that is, exactly at the boundary. Another problem is that we still need

to rely on the parametric structure of the model to uncover the impulse response from

IE (e41) _ IE (1)
Juy -

E,(y11). For example, we need to compute %ﬁ’f“, which at all points y; # b is given
by
b— b (b-—
p<1—c1>( pyt) +_¢< py,>>
o o o
IE (Y1) itD, =0,
- b—pb—p*(y;—b b (b—pb—p"(y;—b
Ju, p*<1_¢< pb—p*(y; ))+_¢( pb —p*(y; )))
g (o g

it D, =1.

There is no clear way to obtain the above impulse response from a local projection of y,,;
on simple nonlinear transformations of y,, such as powers or interactions with the regime
indicator.

APPENDIX F: ADDITIONAL SIMULATION RESULTS

Tables EI, EII, and FIII report the bias, standard deviation, and root mean square error
of the ML estimator of the coefficients of the CKSVAR, KSVAR, and CSVAR models,
respectively, under the data generating process DGP1 described in Appendix B of the
paper. The description of the parameter names in the tables is given in Table B.I of the
paper. Recall that under this DGP, all three models are correctly specified, since the co-
efficients on both lagged and observed Y; are zero in all equations, and there is no kink,
that is, the true 8 = 0. The CKSVAR and CSVAR likelihoods are computed using the
SIS algorithm with R = 1000 particles. The sample size varies as 7" € {100, 250, 1000}.
We notice that the bias of the MLE is negligible for all the parameters in all cases, and
that the standard deviation and RMSE fall at a rate +/7, in accordance with asymp-
totic theory. The results for DGP2 and DGP3 are very similar and are therefore omit-
ted.

F.1. Alternative DGP

The DGPs in the previous simulations have the property that the frequency of the ZLB
regime is around 50%. I reran those simulations with a slight modification to the DGPs to
match the frequency in the sample of the empirical application in the paper. Specifically,
I reduce the lower bound b to a level that makes the frequency of the ZLB regime equal
to 11%. The results are given in Figure F.1 and Table EIV. The results are very similar
to the ones reported in Figure B.1 and Table B.II in the Appendix of the main paper: the
Normal approximation of the sampling distribution of the MLE appears to be very good,
and the bias is negligible.
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TABLE FI

BIAS, STANDARD DEVIATION, AND ROOT MEAN SQUARE ERROR OF MAXIMUM LIKELTHOOD ESTIMATOR OF
PARAMETERS OF CKSVAR(1) MODEL.?

ML-CKSVAR T =100 T =250 T =1000
Parameter Bias sd RMSE Bias sd RMSE Bias sd RMSE
T —0.048 0.111 0.121 -0.017 0.068 0.070 —0.003 0.035 0.035
Eq.3 Constant 0.001 0.293 0.293 —0.006 0.175 0.176 0.004 0.085 0.085
Eq3Y11_1 —0.001 0.111 0.111 0.000 0.061 0.061 0.000 0.032 0.032
Eq3Y12_1 —0.004 0.109 0.109 —0.000 0.064 0.064 —0.000 0.031 0.031
Eq3Y2 1 —0.031 0.289 0.291 —0.010 0.173 0.173 —0.003 0.082 0.082
Eq.31Y2_1 —0.022 0.435 0.436 —0.013 0.258 0.258 0.003 0.122 0.122
B 0.012 0.586 0.586 —0.008 0.356 0.356 0.000 0.176 0.176
B> -0.011 0.606 0.606 —0.004 0.359 0.359 —0.003 0.168 0.168
Eq.1 Constant 0.000 0.360 0.360 0.002  0.213 0.213 0.007  0.105 0.105
Eq.1Y11 1 —0.034 0.098 0.104 —0.011 0.057 0.058 —-0.002  0.029 0.029
Eq.1Y12_1 —0.004 0.108 0.108 0.002  0.060 0.060 0.001 0.028 0.028
Eq1Y2 1 —0.004 0.281 0.281 —-0.002  0.163 0.163 —0.006 0.079 0.079
Eq.2 Constant 0.006 0.356 0.356 0.005 0.214 0.214 0.002  0.102 0.103
Eq2Y11_1 0.004 0.103 0.103 0.000 0.058 0.058 0.000 0.028 0.028
Eq.2Y12_1 —0.029 0.103 0.107 —0.009 0.057 0.058 —-0.002  0.029 0.029
Eq2Y2 1 0.000 0.269 0.269 —0.001 0.159 0.159 0.001 0.078 0.078
Eq.11Y2_1 0.009 0.403 0.403 0.005 0.232 0.232 0.010 0.112 0.113
Eq21Y2_1 —0.003 0.408 0.408 0.002  0.233 0.233 0.004 0.115 0.115
81 0.005 0.260 0.260 —0.001 0.157 0.157 0.001 0.075 0.075
5, —0.005 0.260 0.260 —0.004 0.155 0.155 —0.001 0.073 0.073
Ch_11 —0.067 0.073 0.099 —0.025 0.044 0.051 —0.006 0.024 0.024
Ch_21 —0.005 0.111 0.111 —0.001 0.066 0.066 —0.000 0.031 0.031
Ch_22 -0.075 0.073 0.105 —0.028 0.046 0.054 —0.008 0.023 0.024

aComputed under DGP1 with R = 1000 particles using 1000 MC replications. Parameter names described in Table B.1.
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TABLE EII

BIAS, STANDARD DEVIATION, AND ROOT MEAN SQUARE ERROR OF MAXIMUM LIKELIHOOD ESTIMATOR OF
PARAMETERS OF KSVAR(1) MODEL.?
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ML-KSVAR T =100 T =250 T = 1000
Parameter Bias sd RMSE Bias sd RMSE Bias sd RMSE
T —0.024 0.111 0.113 —0.008 0.068 0.069 —0.001 0.035 0.035
Eq.3 Constant 0.011 0.145 0.145 0.001 0.092 0.092 0.003 0.046 0.046
Eq.3 Y11 1 —0.001 0.103 0.103 0.001 0.060 0.060 —0.000 0.031 0.031
Eq.3Y12_1 —0.004 0.102 0.102 —0.000 0.062 0.062 —0.000 0.030 0.030
Eq3Y2 1 —0.048 0.199 0.204 -0.019 0.122 0.124 —0.003 0.060 0.060
B —0.003 0.571 0.571 -0.013 0.349 0.349 —0.001 0.174 0.174
B2 —0.003 0.584 0.584 —0.001 0.348 0.348 —0.004 0.168 0.168
Eq.1 Constant 0.002 0.264 0.264 0.001 0.165 0.165 0.001 0.080 0.080
Eq.1Y11_1 —0.033 0.093 0.099 —0.012 0.056 0.057 —0.002 0.028 0.028
Eq.1Y12 1 —0.002 0.100 0.100 0.002 0.058 0.058 0.001 0.027 0.027
Eq.1Y2_1 —0.002 0.197 0.197 —0.000 0.117 0.117 —0.001 0.057 0.057
Eq.2 Constant 0.004 0.258 0.258 0.003 0.158 0.158 0.001 0.078 0.078
Eq2Y11_1 0.006 0.096 0.096 0.001 0.057 0.057 0.000 0.027 0.027
Eq.2Y12 1 —0.028 0.094 0.098 —0.008 0.055 0.056 —0.002 0.028 0.029
Eq2Y2_1 —0.001 0.189 0.189 —0.000 0.113 0.113 0.003 0.054 0.055
81 —0.000 0.252 0.252 —0.003 0.156 0.156 0.001 0.075 0.075
5, —0.003 0.253 0.253 —0.003 0.152 0.152 —0.001 0.073 0.073
Ch_11 —0.048 0.070 0.085 —0.018 0.044 0.047 —0.005 0.023 0.024
Ch_21 —0.003 0.108 0.108 —0.000 0.065 0.065 —0.000 0.031 0.031
Ch 22 —0.054 0.070 0.088 —0.020 0.045 0.050 —0.007 0.023 0.024

a2Computed under DGP1 with R = 1000 particles using 1000 MC replications. Parameter names described in Table B.1.

TABLE EIII

BIAS, STANDARD DEVIATION, AND ROOT MEAN SQUARE ERROR OF MAXIMUM LIKELTHOOD ESTIMATOR OF
PARAMETERS OF CSVAR(1) MODEL.*

ML-CSVAR T =100 T =250 T = 1000
Parameter Bias sd RMSE Bias sd RMSE Bias sd RMSE
T —0.026 0.111 0.114 —0.008 0.068 0.069 —0.001 0.035 0.035
Eq.3 Constant ~ —0.009 0.135 0.135 —0.006 0.081 0.081 0.001 0.040 0.040
Eq.3 Y11 1 —0.001 0.104 0.104 0.001 0.060 0.060 —0.000 0.031 0.031
Eq.3Y12_1 —0.004 0.103 0.103 —0.000 0.061 0.061 —0.000 0.030 0.030
Eq3Y2_1 —0.027 0.125 0.128 —0.011 0.078 0.079 —0.001 0.038 0.038
Eq.1 Constant ~ —0.002 0.109 0.110 —0.003 0.065 0.065 0.000 0.031 0.031
Eq.1Y11 1 —0.033 0.090 0.096 —0.012 0.054 0.056 —0.002 0.028 0.028
Eq.1Y12_1 —0.002 0.096 0.096 0.002 0.057 0.057 0.001 0.027 0.027
Eq.1Y2_1 —0.000 0.118 0.118 0.001 0.072 0.072 0.000 0.036 0.036
Eq.2 Constant 0.003 0.106 0.106 0.002 0.063 0.063 —0.000 0.031 0.031
Eq2Y11 1 0.005 0.091 0.092 0.001 0.056 0.056 0.000 0.027 0.027
Eq2Y12_1 —0.026 0.090 0.094 —0.008 0.054 0.055 —0.002 0.028 0.028
Eq2Y2_1 —0.001 0.115 0.115 0.000 0.070 0.070 0.002 0.035 0.035
51 0.001 0.114 0.114 0.002 0.071 0.071 0.001 0.035 0.035
8, —0.001 0.116 0.116 —0.002 0.070 0.070 —0.000 0.034 0.034
Ch_11 —0.033 0.069 0.077 —0.012 0.043 0.044 —0.003 0.023 0.023
Ch_21 —0.005 0.103 0.104 —0.001 0.064 0.064 —0.000 0.031 0.031
Ch_22 —0.037 0.068 0.077 -0.014 0.044 0.046 —0.005 0.023 0.024

2Computed under DGP1 with R = 1000 particles using 1000 MC replications. Parameter names described in Table B.I.
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FIGURE F1.—Sampling densities of ML estimators of reduced-form coefficients of CKSVAR(1) under
DGP1 with b chosen such that Pr(Y,, = b) = 0.11 (solid lines) and approximating Normal densities (dashed
lines). T = 250, 1000 Monte Carlo replications. Parameter names described in Table B.I.

TABLE EIV

MOMENTS OF SAMPLING DISTRIBUTION OF ML ESTIMATORS OF THE PARAMETERS OF CKSVAR(1).2

ML-CKSVAR True Mean Bias sd RMSE
T 1.000 0.988 —0.012 0.050 0.051
Eq.3 Constant 0.000 —0.004 —0.004 0.073 0.073
Eq.3Y11_1 0.000 0.001 0.001 0.055 0.055
Eq.3Y12_1 0.000 —0.002 —0.002 0.056 0.056
Eq3Y2 1 0.000 —0.008 —0.008 0.083 0.083
Eq.31Y2 1 0.000 0.003 0.003 0.501 0.501
B 0.000 0.013 0.013 0.533 0.533
B> 0.000 —0.030 —0.030 0.518 0.519
Eq.1 Constant 0.000 —0.005 —0.005 0.078 0.078
Eq.1Y11 1 0.500 0.488 —0.012 0.055 0.056
Eq.1Y12_1 0.000 0.001 0.001 0.058 0.058
Eq.1Y2 1 0.000 0.001 0.001 0.084 0.084
Eq.2 Constant 0.000 0.005 0.005 0.075 0.075
Eq2Y11_1 0.000 0.001 0.001 0.056 0.056
Eq2Y12_1 0.500 0.491 —0.009 0.056 0.056
Eq2Y2 1 0.000 —0.000 —0.000 0.080 0.080
Eq.11Y2 1 0.000 —0.014 —0.014 0.497 0.497
Eq.21Y2 1 0.000 0.018 0.018 0.491 0.491
& 0.000 0.002 0.002 0.084 0.084
6, 0.000 —0.004 —0.004 0.080 0.080
Ch_11 1.000 0.980 —0.020 0.043 0.047
Ch_21 0.000 —0.002 —0.002 0.065 0.065
Ch_22 1.000 0.978 —0.022 0.045 0.050

2Computed under DGP1 with b chosen such that Pr(Y,, = b) = 0.11, T = 250 using 1000 MC replications. Parameter names

described in Table B.I.
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