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This Online Appendix provides proofs for our results in the extension to a continuum of
types in Appendix B and describes the algorithm that we use to compute the equilibria in
Subsection 5.3 of the paper.

A Proofs for Appendix B

A.1 Proofs of Proposition 7 and Corollary 2

In order to prove these results, consider the program isomorphic to (16)–(17) under a contin-

uum of shocks. Define a function f(θt) = θt/θ̃t for θ̃t which depends on θt as defined in (4). Let
ωt = f(θt) ∈ Ω ≡ [ω, ω], where it is clear that from Assumption 3, there is a one to one mapping

from θt to ωt. Let h(ωt|ωt−1) correspond to the value of θ̃tp(θt|θt−1) (f ′(θt))
−1 /E[θ̃tp(θt|θt−1)|θt−1],

so that h(ωt|ωt−1) > 0,

h(ωt|ωt−1)dωt = θ̃tp(θt|θt−1)/E[θ̃tp(θt|θt−1)|θt−1]dθt,

and
∫ ω
ω
h(ωt|ωt−1)dωt = 1, where we have used the fact that dωt = f ′(θt)dθt. Therefore,

h(ωt|ωt−1) is effectively a density function. Define H(ωt|ωt−1) as the associated c.d.f.
Using this formulation, (16)–(17) can be rewritten as

max
{st(ωt)}ωt∈Ω

∫ ω

ω

h(ωt|ωt−1)
(
ωtU(1− st(ωt)) + U(st(ωt))

)
dωt (A.1)

s.t.

ωtU(1− st(ωt)) + βU(st(ωt)) ≥ ωtU(1− st(ω̂t)) + βU(st(ω̂t)) ∀ωt and ∀ω̂t 6= ωt. (A.2)

(A.1)–(A.2) is identical to (16)–(17), where we have used the one to one mapping from θt
to ωt to write the program as one of choosing a savings rate conditional on the report ω̂t.
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Now consider a relaxed version of (A.1)–(A.2) which allows (1) to be an inequality:

max
{ut(ωt),yt(ωt)}ωt∈Ω

∫ ω

ω

h(ωt|ωt−1)
(
ωtut(ωt) + yt(ωt)

)
dωt (A.3)

s.t.

U−1(ut(ωt)) + U−1(yt(ωt)) ≤ 1 ∀ωt (A.4)

ωtut(ωt) + βyt(ωt) ≥ ωtut(ω̂t) + βyt(ω̂t) ∀ωt and ∀ω̂t 6= ωt. (A.5)

(A.3)–(A.5) is identical to (A.1)–(A.2) if the solution admits (A.4) holding with equality ∀ωt.
(A.3)–(A.5) corresponds to the problem analyzed in Section 3.2 of Amador, Werning, and
Angeletos (2006) so that their analysis applies here as well.

The envelope condition which characterizes (A.5) implies that

ωt
β
u(ωt) + y(ωt) =

∫ ωt

ω

1

β
u(ω′)dω′ +

ω

β
u(ω) + y(ω). (A.6)

Standard arguments also require u(ωt) to be a non-decreasing function of ωt. Thus, (A.6) and
monotonicity are necessary for incentive compatibility. Substituting (A.6) into the objective
function and the resource constraint and integrating by parts allows us to rewrite the problem
as:

max
{ut(ωt),y(ω)}

{
ω

β
u(ω) + y(ω) +

1

β

∫ ω

ω

(1−G(ωt|ωt−1))u(ωt)dωt

}
(A.7)

s.t.

U(1− U−1(ut(ωt))) +
ωt
β
u(ωt)−

ω

β
u(ω)− y(ω)− 1

β

∫ ωt

ω

u(ω′)dω′ ≥ 0 (A.8)

and ut(ωt) non-decreasing (A.9)

for
G(ωt|ωt−1) = H(ωt|ωt−1) + ωt(1− β)h(ωt|ωt−1).

The above program can be solved using Lagrangian methods. Following Amador, Werning,
and Angeletos (2006), define ωp(ωt−1) = max{ω, ω′} where ω′ is the lowest ω ∈ Ω such that
∀ω′′ ≥ ω, ∫ ω

ω′′
(1−G(ω′′′|ωt−1))dω′′′ ≤ 0. (A.10)

Consider the following condition.

Condition 2. ∀ωt−1 and ∀ωt ≤ ωp (ωt−1), G(ωt|ωt−1) is non-decreasing in ωt.

Proposition 2 in Amador, Werning, and Angeletos (2006) states that the solution to (A.7)–
(A.9) admits st(ωt) = st(ωp (ωt−1)) if ωt ≥ ωp (ωt−1). Moreover, Proposition 3 in that paper
states that if Condition 2 holds, then the solution to (A.7)–(A.9) admits (A.8) holding with
equality, so that (A.4) also holds with equality. Furthermore, st(ωt) = sf (ωt) if ωt < ωp (ωt−1),
where with some abuse of notation, sf (ωt) is defined as the flexible optimum given by

ωtU
′(1− sf (ωt)) = βU ′(sf (ωt)).
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Let s(ωt−1) be defined by s(ωt−1) = sf (ωp(ωt−1)) if ωp(ωt−1) > ω, and∫ ω

ω

h(ωt|ωt−1)
(
ωtU

′(1− s(ωt−1))− U ′(s(ωt−1))
)
dωt = 0

otherwise. ∀ωt, it follows then that the sequential optimum features

st(ω
t) = max{sf (ωt), s(ωt−1)}.

This therefore means that the sequentially optimal rule at any date t can be implemented with
a debt limit, which depends only on ωt−1 and the current level of debt.

In order to complete the argument, we must verify that θp(θt−1) = f−1(ωp(f(θt−1))) and
that Assumption 4 is identical to Condition 2. To show that θp(θt−1) = f−1(ωp(f(θt−1))), note
that (A.10) can be rewritten as

[1−H(ω′′|ωt−1)]ω′′
 1

β
−

(∫ ω
ω′′
ω′′′h(ω′′′|ωt−1)dω′′′

)
/
(∫ ω

ω′′
h(ω′′′|ωt−1)dω′′′

)
ω′′

 ≥ 0.

Letting θ′′ = f−1(ω′′) and θ′′′ = f−1(ω′′′) with associated values θ̃
′′

and θ̃
′′′

, the above condition
becomes  1

β
−

(∫ θ
θ′′
θ′′′t p(θ

′′′
t |θt−1)dθ′′′

)
/
(∫ θ

θ′′
θ̃
′′′
t p(θ

′′′
t |θt−1)dθ′′′

)
θ′′/θ̃

′′

 ≥ 0,

which becomes (B.1). This establishes that θp(θt−1) = f−1(ωp(f(θt−1))).
To show that Assumption 4 is identical to Condition 2, note that G(ωt|ωt−1) is continuously

differentiable in ωt and first order conditions imply that Condition 2 reduces to

d log h(ωt|ωt−1)
d logωt

≥ −2− β
1− β

. (A.11)

We can show that (B.2) implies (A.11). Given the definition of h(·), note that the left hand
side of (A.11) can be expanded so that (A.11) becomes

d log θ̃t
d log θt

+
d log p(θt|θt−1)

d log θt
−
d log

(
dθ̃t/dθt

)
d log θt

1− d log θ̃t
d log θt

≥ −2− β
1− β

,

which is equivalent to (B.2).�

A.2 Proof of Proposition 8

Consider the case of i.i.d. shocks, and with some abuse of notation, let Wt(·) correspond to the
continuous type analogue of the continuation value defined in (9) divided by δE[θt], where we
have taken into account that shocks are i.i.d. Let the range [W,W ] correspond to the feasible
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range of such continuation values. To write the period zero problem, we pursue an analogous
strategy as in the proof of Proposition 7 by considering the relaxed problem which allows the
resource constraint to hold as an inequality:

max
{ut(ωt),yt(ωt)}ωt∈Ω

∫ ω

ω

h(ωt|ωt−1)
(
ωtut(ωt) + yt(ωt) +Wt(ωt)

)
dωt (A.12)

s.t.

U−1(ut(ωt)) + U−1(yt(ωt)) ≤ 1 ∀ωt, (A.13)

ωtut(ωt) + βyt(ωt) + βWt(ωt) ≥ ωtut(ω̂t) + βyt(ω̂t) + βWt(ω̂t) ∀ωt and ∀ω̂t 6= ωt, (A.14)

and W ≤ Wt(ωt) ≤ W ∀ωt. (A.15)

The same envelope condition in (A.6) applies. Together with the monotonicity of ut(ωt),
it implies incentive compatibility. Substituting (A.6) into (A.12), (A.13), and (A.15), the
program can be rewritten as

max
{ut(ωt),y(ω),W≤W (ω)≤W}

{
ω

β
u(ω) + y(ω) +W (ω) +

1

β

∫ ω

ω

(1−G(ωt|ωt−1))u(ωt)dωt

}
(A.16)

s.t.

U(1− U−1(ut(ωt))) +W +
ωt
β
u(ωt)−

ω

β
u(ω)− y(ω)−W (ω)− 1

β

∫ ω

ω

u(θ′)dθ′ ≥ 0 (A.17)

and ut(ωt) non-decreasing. (A.18)

(A.16)–(A.18) is identical to (A.7)–(A.9) since the term y(ω) in (A.7)–(A.9) is replaced
with y(ω) +W (ω) in (A.16)–(A.18) and the term U(1− U−1(ut(ωt))) is replaced with U(1−
U−1(ut(ωt))) + W . Therefore, the same arguments as those of Amador, Werning, and An-
geletos (2006) imply that the solution to (A.16)–(A.18) admits (A.17) holding with equality,
which then means that (A.13) holds with equality and W (ωt) = W . It thus follows that the
solution admits a static mechanism, and therefore the optimal mechanism is characterized as
in Proposition 7.�

A.3 Proof of Proposition 9

Proof of part (i). Suppose by contradiction that the ex-ante optimum coincides with the
sequential optimum, so the solution is characterized by Proposition 7. With some abuse of
notation, let V θ0(θ̂0) correspond to the expected date-1 welfare in the sequential optimum

to a type θ0 who lies and claims to be a type θ̂0. By lying, this type receives a mechanism
associated with θ̂0, evaluated using probabilities p(θ1|θ0). Given the description of the solution

in Proposition 7, it is straightforward to show that V θ0(θ̂0) is continuously differentiable in θ̂0
with V θ0′(θ̂0) = 0 for θ̂0 = θ0.

We now consider a perturbation that affects types θ0 < θp(θ−1). To facilitate the con-
struction of the perturbation, note first that one implementation of the sequentially optimal
mechanism is as follows. The government can choose any savings rate above sf (θp(θ−1)). If
the chosen savings rate is s0 > sf (θp(θ−1)), then the mechanism at date 1 corresponds to the
sequentially optimal mechanism for type sf

−1
(s0), where sf

−1
(·) is a function that uses (C.1)
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to derive the type from the chosen flexible savings rate. If instead the chosen savings rate
is s0 = sf (θp(θ−1)), then the government reports its type θ̂0, and the mechanism at date 1

corresponds to the sequentially optimal mechanism for type θ̂0.
Given this implementation, consider the following perturbation. If the chosen savings rate

is s0 = sf (θp(θ−1)), the mechanism is unchanged. If instead the chosen savings rate is s0 >
sf (θp(θ−1)), the mechanism at date 1 corresponds to the sequentially optimal mechanism for
type sf

−1
(s0)+εµ(sf

−1
(s0)), for ε > 0 arbitrarily small and for some continuously differentiable

function µ(·) satisfying µ(·) > 0, µ′(·) > −1, and limθ0→θp(θ−1) µ(θ0) = 0. Note that if ε = 0,
the original sequentially optimal mechanism is in place. If instead ε > 0, arbitrarily small, then
all types θ0 ≥ θp(θ−1) do not change their behavior, but the chosen savings rate sε0(θ−1, θ0) for
types θ0 < θp(θ−1) must satisfy the following first order condition:

−θ0U ′(1− sε0(θ−1, θ0)) + βθ̃0U
′(sε0(θ−1, θ0)) (A.19)

=−βδV θ0′(sf
−1

(sε0(θ−1, θ0)) + εµ(sf
−1

(sε0(θ−1, θ0))))
d[sf

−1
(sε0(θ−1, θ0)) + εµ(sf

−1
(sε0(θ−1, θ0)))]

dsε0(θ−1, θ0)
.

As ε approaches 0, sε0(θ−1, θ0) approaches sf0(θ0). We can show that it must approach it from
above; that is, for sufficiently small ε > 0, it must be that sε0(θ−1, θ0) ≥ sf0(θ0). If instead
sε0(θ−1, θ0) < sf0(θ0), then type θ0 could make itself strictly better off by increasing its savings
rate to sf0(θ0), as this maximizes its immediate welfare and raises its continuation utility.

Suppose that Condition 1 holds for θ−1 and some θ0. Together with (A.19), this implies
that sε0(θ−1, θ0) > sf0(θ0) for a positive measure of types θ0. Using (A.19), the change in welfare
as ε approaches 0 for any such θ0 has the same sign as

[−θ0U ′(1− sf0(θ0)) + θ̃0U
′(sf0(θ0))]

dsε0(θ−1, θ0)

dε
|ε=0 + δV θ0′(θ0)

1

sf ′(θ0)

dsε0(θ−1, θ0)

dε
|ε=0 > 0,

where we have used (C.1) and the fact that V θ0′(θ0) = 0. Therefore, the perturbation strictly
increases welfare. Note that if Condition 1 does not hold for θ−1, then it necessarily holds
at some θt−1, and the same perturbation can be performed at that date while continuing to
satisfy all incentive compatibility constraints at t− k for k > 1.

Proof of part (ii). Suppose by contradiction that the mechanism does not exhibit history

dependence. Let V θ(θ̂) correspond to the continuation value to a type θ who reports θ̂ under

this history-independent mechanism, where by assumption, V θ(θ̂) is piecewise continuously
differentiable. Given that the continuation mechanism is independent of the date, and given
that the ex-ante optimal mechanism is chosen at date 0, it follows that ∀θ−1, the continuation
value at date 0 is V θ(θ) if θ = θ−1, and by optimality, V θ′(θ) = 0. Thus, the first order
conditions which guarantee truthtelling whenever the mechanism is differentiable imply that

[−θtU ′(1− st(θt−1, θt)) + βθ̃tU
′(st(θt−1, θt))]

dst(θt−1, θt)

dθt
= 0. (A.20)

This requires that either st(θt−1, θt) = sf (θt) or dst(θt−1, θt)/dθt = 0. Therefore, (A.20)
effectively corresponds to the first order condition to static incentive compatibility constraints.
As such, the optimal mechanism is not dynamic. The solution to the program subject to
a sequence of static incentive compatibility constraints coincides with the solution to the
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sequential optimum described in Proposition 7. However, part (i) shows that this mechanism
is suboptimal.�

B Algorithm

This section describes the algorithm that we use to compute the equilibria in Subsection 5.3.
We work from the first order conditions to the program in (28). Let φ be the Lagrange
multiplier on the relevant incentive constraint (26). Define

Γ =
p(θL|θi) + λp(θL|θ−i)

1 + λ

and the following functions:

sL∗ (Γ, φ) =

[
θL

θ̃
L

(
Γ + φ

Γ + δφ

)
+ 1

]−1
,

sH∗ (Γ, φ) =

[
θH

θ̃
H

(
1− Γ− φθL/θH

1− Γ− δφθ̃
L
/θ̃

H

)
+ 1

]−1
,

Γ′∗ (Γ, φ) =
(1− Γ) (1− α)− δφα

(1− Γ)− δφ
,

where α ≡ p(θi|θi). These equations correspond to the first order conditions to (28), where
Γ′∗ (Γ, φ) is the value of Γ in the next period given a particular Γ in the current period. We
guess some initial functions V L

0 (Γ) and V H
0 (Γ) defined for Γ ∈ [0, α]. Then the next steps

allow us to define V L
t (Γ) and V H

t (Γ) iteratively, where t denotes the number of the iteration:

1. Define Ft (Γ, φ) for a given V L
t (Γ) and V H

t (Γ):

Ft (Γ, φ) = θLU
(
1− sL∗ (Γ, φ)

)
+ δθ̃

L
U
(
sL∗ (Γ, φ)

)
+ δβV L

t (α)

−θLU
(
1− sH∗ (Γ, φ)

)
− δθ̃

L
U
(
sH∗ (Γ, φ)

)
− δβV L

t (Γ′∗ (Γ, φ)) .

Note that Ft (Γ, φ) captures the incentive constraint in (26).

2. For each Γ, choose the value of φ that minimizes the absolute value of Ft (Γ, φ), effectively
letting (26) hold with equality. Denote this value by φ∗t (Γ).
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3. Given φ∗t (Γ), define the following functions:

V L
t+1 (Γ) =


α
[
θLU

(
1− sL∗ (Γ, φ∗t (Γ))

)
+ θ̃

L
U
(
sL∗ (Γ, φ∗t (Γ))

)]
+ (1− α)

[
θHU

(
1− sH∗ (Γ, φ∗t (Γ))

)
+ θ̃

H
U
(
sH∗ (Γ, φ∗t (Γ))

)]
+αβV L

t (α) + (1− α) βV H
t (Γ′∗ (Γ, φ∗t (Γ)))

 ,

V H
t+1 (Γ) =


(1− α)

[
θLU

(
1− sL∗ (Γ, φ∗t (Γ))

)
+ θ̃

L
U
(
sL∗ (Γ, φ∗t (Γ))

)]
+α
[
θHU

(
1− sH∗ (Γ, φ∗t (Γ))

)
+ θ̃

H
U
(
sH∗ (Γ, φ∗t (Γ))

)]
+ (1− α) βV L

t (α) + αβV H
t (Γ′∗ (Γ, φ∗t (Γ)))

 .

V i
t+1 (Γ) is the continuation welfare given last period’s shock θi and given the weight Γ

assigned to the low type. Our construction takes into account the resetting property,
so V L

t (α) is the continuation value with weight α if the low shock was realized in the
previous period.1

4. Given V L
t+1 (Γ) and V H

t+1 (Γ), repeat steps 1-3 until V L
t+1 (Γ) and V H

t+1 (Γ) converge.

Using the values of V L (Γ) and V H (Γ) that emerge from this iteration, we can define the
policy functions sL∗ (Γ, φ∗ (Γ)), sH∗ (Γ, φ∗ (Γ)), and Γ′∗ (Γ, φ∗ (Γ)). These policy functions can
then be used to simulate a path of shocks and calculate the value of s.

References

Amador, M., I. Werning, and G.-M. Angeletos (2006): “Commitment Vs. Flexibility,”
Econometrica, 74, 365–96.

1When the equilibrium resets, λ = 0 because the threat-keeping constraint is slack, and thus Γ = α.
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