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This Online Appendix provides proofs for our results in the extension to a continuum of
types in Appendix B and describes the algorithm that we use to compute the equilibria in
Subsection 5.3 of the paper.

A Proofs for Appendix B

A.1 Proofs of Proposition 7 and Corollary 2

In order to prove these results, consider the program isomorphic to (16)—(17) under a contin-

uum of shocks. Define a function f(6;) = 6,/6, for 6, which depends on 6, as defined in (4). Let
= f(6;) € Q = [w, ], where it is clear that from Assumption 3, there is a one to one mapping

from 0, to wy. Let h(w|w;—1) correspond to the value ofgtp(6t|9t,1) (f/(6.) 7" JE[B,p(6:]6,-1)|6;1],
so that h(wi|wi—1) >0,

h(wi|wi—1)dw; = 0up(0;|0,_1) JE[0,p(0:]0,—1)|0,_1]d0;,

and ffh(wt]wt,l)dwt = 1, where we have used the fact that dw, = f'(0;)df,. Therefore,

h(we|w,_1) is effectively a density function. Define H (w;|w;_1) as the associated c.d.f.
Using this formulation, (16)—(17) can be rewritten as

max /  h(@rwes) (WU (L = se(wn)) + U(si(we))deon (A1)

{st(w)}wien Jw
s.t.
wlU(1 = se(wy)) + BU(se(wr)) > wilU(1 — s4(Wr)) + BU(8¢(0)) Ywr and Vo, # we. (A.2)

(A.1)—(A.2) is identical to (16)—(17), where we have used the one to one mapping from 6,
to wy to write the program as one of choosing a savings rate conditional on the report ;.
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Now consider a relaxed version of (A.1)—(A.2) which allows (1) to be an inequality:

max / h(we|wi—1) (Wi (we) + i (wy) ) dwy (A.3)
{ut(we)ye(we)ywen S
s.t.
U™ (ue(we)) + U (ye(wr)) < 1V (A4)
witg(wy) + By (we) > wiug(@) + By (W) Ywy and Vo, # wy. (A.5)

(A.3)—(A.5) is identical to (A.1)—(A.2) if the solution admits (A.4) holding with equality Vw;.
(A.3)—(A.5) corresponds to the problem analyzed in Section 3.2 of Amador, Werning, and
Angeletos (2006) so that their analysis applies here as well.

The envelope condition which characterizes (A.5) implies that

e = wtlu o' + Zu(w w
Eu(wt)‘i_y(wt)_ B (w')d *3 (W) + y(w). (A.6)

Standard arguments also require u(w;) to be a non-decreasing function of w;. Thus, (A.6) and
monotonicity are necessary for incentive compatibility. Substituting (A.6) into the objective
function and the resource constraint and integrating by parts allows us to rewrite the problem
as:

w I
s {2y + 5 [0 G} (A7)
s.t.
1 Wy w I / /
U= U o)) + Fulo) — Sule) ~y@) - 5 [ uw@)ds 20 (4
and u(w;) non-decreasing (A.9)

for
G(wi|wi—1) = H(we|lwi—1) + wi(1 — B)h(wi|we—1).

The above program can be solved using Lagrangian methods. Following Amador, Werning,
and Angeletos (2006), define wy,(w;—1) = max{w,w'} where w’ is the lowest w € Q such that
V'’ > w,

/ (1 - GW"|wi—1))dw™ <0. (A.10)

Consider the following condition.
Condition 2. Vw; 1 and Vw; < w, (wi—1), G(wi|wi—1) is non-decreasing in wy.

Proposition 2 in Amador, Werning, and Angeletos (2006) states that the solution to (A.7)—
(A.9) admits s;(w;) = s¢(wp (we-1)) if we > wp (wi—1). Moreover, Proposition 3 in that paper
states that if Condition 2 holds, then the solution to (A.7)—(A.9) admits (A.8) holding with
equality, so that (A.4) also holds with equality. Furthermore, s;(w;) = s/ (w;) if wy < w, (wi—1),
where with some abuse of notation, s/(w;) is defined as the flexible optimum given by

wU'(1 = s (wy)) = BU' (87 (wy)).
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Let s(w;—1) be defined by s(w;_1) = s/ (wy(wi—1)) if wy(wi—1) > w, and

/w h(wt]wt_l)(th’(l — s(wy—1)) — U’(g(wt_l)))dwt =0

otherwise. Vw!, it follows then that the sequential optimum features

si(w) = max{s’(w,), s(w,_1)}.

This therefore means that the sequentially optimal rule at any date ¢t can be implemented with
a debt limit, which depends only on w;_; and the current level of debt.

In order to complete the argument, we must verify that 6,(6,_1) = f~'(w,(f(0;_1))) and
that Assumption 4 is identical to Condition 2. To show that 6,(6;—1) = f~'(w,(f(6:-1))), note
that (A.10) can be rewritten as

§ (1 <f5/ w///h(w///|wt_l)dw///> / (fj/ h<w///|wt_1)dw///>
1 — H(w"|wi—1)]w B — = > 0.

Letting 0" = f~}(w") and 0" = f~1(w") with associated values 7" and 5///, the above condition

becomes . —
L (Jiarmeroas”) /(0.8 per e, as)
E B 9///5”

which becomes (B.1). This establishes that 6,(6;_1) = f~(w,(f(0:-1)))-

To show that Assumption 4 is identical to Condition 2, note that G(w¢|w;—1) is continuously
differentiable in w; and first order conditions imply that Condition 2 reduces to

>0

— Y

dlog h(w¢|wi-1) S _2- 5

Torw, 2 TT=F (A.11)

We can show that (B.2) implies (A.11). Given the definition of A(-), note that the left hand
side of (A.11) can be expanded so that (A.11) becomes

dlogf, _ dlogp(9,l6, ) @18 (8. /a0,)
dlog b, dlog b, dlog 6, 2-p
dlog 0, - 1-p

B dlog 6,

which is equivalent to (B.2).H

A.2 Proof of Proposition 8

Consider the case of i.i.d. shocks, and with some abuse of notation, let W;(-) correspond to the
continuous type analogue of the continuation value defined in (9) divided by dE[#,], where we

have taken into account that shocks are i.i.d. Let the range [W, W] correspond to the feasible



range of such continuation values. To write the period zero problem, we pursue an analogous
strategy as in the proof of Proposition 7 by considering the relaxed problem which allows the
resource constraint to hold as an inequality:

o )r;nz?x)} / h(wi|wi—1) (Wi (we) + yi(we) + Wi(wy) ) dwy (A.12)
ut(We )yt (We) bwen J
s.t.
U_l(ut(wt)) + U_l(yt(wt)) § 1 th, (A13)
wittg(wy) + By (we) + BWi(we) > wiuy(©r) + Bye(W0y) + BWi(Wy) Yw, and VI, # wy,  (A.14)
and W < Wy(w;) < W V. (A.15)

The same envelope condition in (A.6) applies. Together with the monotonicity of u(wy),
it implies incentive compatibility. Substituting (A.6) into (A.12), (A.13), and (A.15), the
program can be rewritten as

w

max {w (W) +y(w) + W(w) + l/ (1-— G(wt|wt_1))u(wt)dwt} (A.16)

{us(we)y(w) WSW (w)<W'} EU B
s.t.
UL = U™ (ug(we))) + W + %U(wt) - %U(g) —y(w) = W) - %/: u(0')de’ >0 (A.17)
and u(w;) non-decreasing. (A.18)

(A.16)—(A.18) is identical to (A.7)—(A.9) since the term y(w) in (A.7)—(A.9) is replaced
with y(w) + W (w) in (A.16)-(A.18) and the term U(1 — U~ *(us(wy))) is replaced with U(1 —
U~ uy(w;))) + W. Therefore, the same arguments as those of Amador, Werning, and An-
geletos (2006) imply that the solution to (A.16)—(A.18) admits (A.17) holding with equality,
which then means that (A.13) holds with equality and W (w;) = W. It thus follows that the
solution admits a static mechanism, and therefore the optimal mechanism is characterized as

in Proposition 7.1

A.3 Proof of Proposition 9

Proof of part (i). Suppose by contradiction that the ex-ante optimum coincides with the
sequential optimum, so the solution is characterized by Proposition 7. With some abuse of
notation, let V% (fy) correspond to the expected date-1 welfare in the sequential optimum
to a type 6y who lies and claims to be a type 50. By lying, this type receives a mechanism
associated with 6, evaluated using probabilities p(#;]0y). Given the description of the solution
in Proposition 7, it is straightforward to show that /% (@0) is continuously differentiable in 50
with V(’O’(go) =0 for 50 = 0.

We now consider a perturbation that affects types 6y < 6,(0_1). To facilitate the con-
struction of the perturbation, note first that one implementation of the sequentially optimal
mechanism is as follows. The government can choose any savings rate above s/(6,(0_1)). If
the chosen savings rate is sy > s/(6,(6_1)), then the mechanism at date 1 corresponds to the
sequentially optimal mechanism for type s/ _1(30), where s/ _1(-) is a function that uses (C.1)



to derive the type from the chosen flexible savings rate. If instead the chosen savings rate
is so = s7(0,(0_1)), then the government reports its type 6, and the mechanism at date 1
corresponds to the sequentially optimal mechanism for type 50.

Given this implementation, consider the following perturbation. If the chosen savings rate
is so = s/(0,(0_1)), the mechanism is unchanged. If instead the chosen savings rate is sy >
s7(0,(0_1)), the mechanism at date 1 corresponds to the sequentially optimal mechanism for
type s/ (so)+eu(s’ (s0)), for € > 0 arbitrarily small and for some continuously differentiable
function p(-) satisfying p(-) > 0, /() > —1, and limg,p,9_,) i(fo) = 0. Note that if ¢ = 0,
the original sequentially optimal mechanism is in place. If instead € > 0, arbitrarily small, then
all types 6y > 60,(0_1) do not change their behavior, but the chosen savings rate s§(0_1,6) for
types 0y < 0,(0_1) must satisfy the following first order condition:

—QoU/(l - 88(0_1, 90)) + ﬁaoU/(86<9_1, 00)) (A]_g)

1 1 Sffl se(6_1, 6, c Sf—1 86 1.6,
= BV (550601, 00)) + epls” (5501, 00)))) 220 %”(;MQ) (53(6-1,60))]

As € approaches 0, s§(6-1,6y) approaches sg (0g). We can show that it must approach it from
above; that is, for sufficiently small € > 0, it must be that s5(0_y,60) > si(6). If instead
s5(0-1,6p) < s(’; (0p), then type 0y could make itself strictly better off by increasing its savings
rate to s{; (0y), as this maximizes its immediate welfare and raises its continuation utility.

Suppose that Condition 1 holds for #_; and some 6. Together with (A.19), this implies
that s5(6_y,60) > s)(6) for a positive measure of types fy. Using (A.19), the change in welfare
as ¢ approaches 0 for any such 6, has the same sign as

dsg(Q_l, 00)
de

1 dsg(Q_l,Qo)

[—0,U" (1 — st (00)) + 50U/(5£(90))] s77(6,) de

=0 + V7 (6,) |e=0 > 0,

where we have used (C.1) and the fact that V%'(6y) = 0. Therefore, the perturbation strictly
increases welfare. Note that if Condition 1 does not hold for _;, then it necessarily holds
at some #;_1, and the same perturbation can be performed at that date while continuing to
satisfy all incentive compatibility constraints at ¢t — k for & > 1.

Proof of part (ii). Suppose by contradiction that the mechanism does not exhibit history
dependence. Let V? (@) correspond to the continuation value to a type € who reports § under
this history-independent mechanism, where by assumption, V@(@) is piecewise continuously
differentiable. Given that the continuation mechanism is independent of the date, and given
that the ex-ante optimal mechanism is chosen at date 0, it follows that V6 _;, the continuation
value at date 0 is V9(0) if § = 6_;, and by optimality, V¥(#) = 0. Thus, the first order
conditions which guarantee truthtelling whenever the mechanism is differentiable imply that

dst(etfla Ht)

[—0,U"(1 — 5:(6,_1,0,)) + BOU (5:(0;_1,6,))] 7,

= 0. (A.20)
This requires that either s,(6;_1,0;) = s/(6;) or ds,(0,_1,0;)/df; = 0. Therefore, (A.20)
effectively corresponds to the first order condition to static incentive compatibility constraints.
As such, the optimal mechanism is not dynamic. The solution to the program subject to
a sequence of static incentive compatibility constraints coincides with the solution to the



sequential optimum described in Proposition 7. However, part (i) shows that this mechanism
is suboptimal.ll

B Algorithm

This section describes the algorithm that we use to compute the equilibria in Subsection 5.3.
We work from the first order conditions to the program in (28). Let ¢ be the Lagrange
multiplier on the relevant incentive constraint (26). Define

p(0"10") + Ap(6710~")
F e
1+ A

and the following functions:

. [T+ !
wa =[G () )

H L /nH n
s (0,¢) = [f_H ( 1_F_¢9~L/9~H> +1
7" \1 -1 —5¢0" /8

e _ (=D -a)—da

where o = p(6'|60"). These equations correspond to the first order conditions to (28), where
[ (T, ¢) is the value of T" in the next period given a particular I" in the current period. We
guess some initial functions Vj¥ (I') and Vi (T') defined for T' € [0,a]. Then the next steps
allow us to define V;* (T') and V;# (T) iteratively, where ¢ denotes the number of the iteration:

1. Define F; (T, ¢) for a given V;* (T') and V;# (T):

F(D,¢) = 0°U (1—s2 (I, ¢)) +00 U (s (T, ¢)) + 68V, (a)
6" (1— 5" (,6)) — 80 U (s (T, 9)) — 68V, (I (T ).

Note that F; (I, ¢) captures the incentive constraint in (26).

2. For each I, choose the value of ¢ that minimizes the absolute value of F; (I, ¢), effectively
letting (26) hold with equality. Denote this value by ¢; (I").



3. Given ¢; (I"), define the following functions:

Vﬁd (F) -

A\

Hx

[0 (1= s (007 ) + 57U (5 (0,67 1)
(1= 0) [0 (1= " (0,65 (1)) +0"U (s (1,07 (T))] (-
\ FaBVE (a) + (1= a) BV (I (T, 67 (1))
[((1—a)[0"U (1 - st (T, <>>>+9 U (st (0,67 (1))
Vi D) = a 070 (1= (0,07 (1) 407U (s (1, 07 (T)]
+(1-a) BV (@) + aBV (I (T, 67 (1))

\

Vit (T) is the continuation welfare given last period’s shock 6" and given the weight T
assigned to the low type. Our construction takes into account the resetting property,
so V' () is the continuation value with weight « if the low shock was realized in the
previous period.!

4. Given V4, (T) and V[, (T), repeat steps 1-3 until V%, (T') and V7 (T') converge.
Using the values of V' (I') and V# (I") that emerge from this iteration, we can define the

policy functions s (T, ¢* (T)), s#* (T, ¢* (")), and I"* (T, ¢* (I')). These policy functions can
then be used to simulate a path of shocks and calculate the value of .
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"When the equilibrium resets, A = 0 because the threat-keeping constraint is slack, and thus I' = a.
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