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This supplementary appendix contains proofs of the theorems given in the main
paper.

PROOF OF THEOREM 3.1: Since {Zt} is a stationary Markov chain, it is
known (see Theorems 7.3(b) and 3.29(II) in Bradley (2007)) that its β-mixing
coefficients satisfy

βk = 1
2
‖F0�k(x� y)− F(x)F(y)‖TV�

where F0�k is the joint distribution function of Z0 and Zk, and ‖ · ‖TV is total
variation (in the Vitali sense).

From Sklar’s theorem, we thus have

βk = 1
2

∥∥Ck(F(x)�F(y))− F(x)F(y)
∥∥

TV
≤ 1

2
‖Ck(x� y)− xy‖TV�

Equation (2.1) implies that Ck inherits the property of absolute continuity
from C . Letting ck denote the density of Ck, we now have that βk ≤ 1

2‖ck − 1‖1

and hence βk ≤ 1
2‖ck − 1‖2.

As a symmetric square-integrable joint density function with uniform mar-
ginals, c admits the mean square convergent expansion

c(x� y)= 1 +
∞∑
i=1

λiφi(x)φi(y)�(A.1)

where the eigenvalues {λi} form a nonincreasing square-summable sequence
of nonnegative real numbers and the eigenfunctions {φi} form a complete or-
thonormal sequence in L2[0�1]. Expansions of this form were studied by Lan-
caster (1958), Rényi (1959), and Sarmanov (1958a, 1958b, 1961). Using (2.1),
we deduce that the densities ck satisfy

ck(x� y)= 1 +
∞∑
i=1

λk
i φi(x)φi(y)�
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which is simply a restatement of a result due to Sarmanov (1961) in terms of
copula functions. We now have

‖ck − 1‖2 =
∥∥∥∥∥

∞∑
i=1

λk
i φi(x)φi(y)

∥∥∥∥∥
2

�

and so with two applications of Parseval’s equality, we obtain

‖ck − 1‖2 =
( ∞∑

i=1

λ2k
i

)1/2

≤ λk−1
1

( ∞∑
i=1

λ2
i

)1/2

= λk−1
1 ‖c − 1‖2�

As observed by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b,
1961), λ1 is equal to the maximal correlation of C . Since this quantity is as-
sumed to be less than 1, the proof is complete. Q.E.D.

PROOF OF THEOREM 3.2: Suppose first that ρC = 1. As observed by Lan-
caster (1958), Rényi (1959), and Sarmanov (1958a, 1958b), the supremum
in (3.1) is achieved by a specific pair of functions f�g when c is square in-
tegrable. Consequently, for such f�g, we have

∫∫
f (x)g(y)c(x� y)dxdy = 1.

Further, since
∫
f 2 = ∫

g2 = 1 and the density c has uniform marginals, we
have

∫∫
f (x)2c(x� y)dxdy = ∫∫

g(y)2c(x� y)dxdy = 1. It follows that

∫ 1

0

∫ 1

0
f (x)g(y)c(x� y)dxdy

=
(∫ 1

0

∫ 1

0
f (x)2c(x� y)dxdy

)1/2(∫ 1

0

∫ 1

0
g(y)2c(x� y)dxdy

)1/2

�

and so the Cauchy–Schwarz inequality holds with equality. This can be true
only if the set D= {(x� y) : f (x) �= g(y)} satisfies

∫∫
D
c = 0. Let A= {x : f (x)≥

0} and B = {y :g(y) < 0}. The conditions
∫
f = ∫

g = 0 and
∫
f 2 = ∫

g2 = 1
ensure that A and B have measure strictly between zero and one. Since
(A × B) ∪ (Ac × Bc) ⊆ D, we have

∫∫
(A×B)∪(Ac×Bc)

c = 0, and hence c = 0 al-
most everywhere on (A×B)∪ (Ac ×Bc).

Suppose next that c = 0 almost everywhere on (A × B) ∪ (Ac × Bc),
where A�B have measure strictly between zero and one. Let f (x)= 1 (x ∈A)
and g(y)= 1 (y /∈ B). It is easily verified that f (x) = g(y) on a subset of [0�1]2

over which c integrates to 1. Since neither f nor g is constant almost every-
where, it follows that ρC = 1. Q.E.D.

PROOF OF THEOREM 3.3: We will show that C cannot exhibit lower tail de-
pendence when c is square integrable and μL exists. The corresponding result
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for upper tail dependence can be shown in essentially the same way. For any
n ∈ N and any x ∈ (0�1], we may write

C(x�x)

x
= x+

n∑
i=1

λix
−1

(∫ x

0
φi(z)dz

)2

+ ξn(x)�

where ξn is defined by this equation. The Cauchy–Schwarz inequality implies
that

x−1

(∫ x

0
φi(z)dz

)2

≤ x−1

(∫ x

0
dz

)(∫ x

0
φi(z)

2 dz

)

=
(∫ x

0
φi(z)

2 dz

)
�

Square integrability of φi therefore implies that limx→0+ x−1/2
∫ x

0 φi(z)dz = 0.
We thus obtain

lim
x→0+

C(x�x)

x
= lim

x→0+ ξn(x)≤ ‖ξn‖∞

for each n ∈ N. It thus suffices to show that ‖ξn‖∞ → 0 as n → ∞. Using
Cauchy–Schwarz, we have

‖ξn‖∞ =
∥∥∥∥∥x−1

∫ x

0

∫ x

0

(
c(u�v)− 1 −

n∑
i=1

λiφi(u)φi(v)

)
dudv

∥∥∥∥∥
∞

≤
∥∥∥∥∥
(∫ x

0

∫ x

0

(
c(u�v)− 1 −

n∑
i=1

λiφi(u)φi(v)

)2

dudv

)1/2∥∥∥∥∥
∞

=
(∫ 1

0

∫ 1

0

(
c(u� v)− 1 −

n∑
i=1

λiφi(u)φi(v)

)2

dudv

)1/2

�

Convergence of this last term to zero as n → ∞ is the content of our series
expansion (A.1). Q.E.D.

PROOF OF THEOREM 4.1: Since {Zt} is a Markov chain, Theorem 7.5(I)(a)
of Bradley (2007) implies that ρk decays geometrically fast if ρ1 < 1. We
thus need only show that ρ1 ≤ ρC . Given σ-fields A� B ⊆ F , let ρ(A� B) =
supf�g |Corr(f�g)|, where the supremum is taken over all random variables f

and g measurable with respect to A and B, respectively, with positive and
finite variance. Since {Zt} is a stationary Markov chain, Theorem 7.3(c) in
Bradley (2007) implies that ρ1 = ρ(σ(Z0)�σ(Z1)). Let U , V be random vari-
ables with joint distribution function C , and let F−1 denote the quasi-inverse
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distribution function given by F−1(z)= infx{F(x)≥ z}. Then Z∗
0 = F−1(U) and

Z∗
1 = F−1(V ) have the same joint distribution as Z0 and Z1, and so Propo-

sition 3.6(I)(c) of Bradley (2007) implies that ρ1 = ρ(σ(Z∗
0)�σ(Z

∗
1)). Since

σ(Z∗
0) ⊆ σ(U) and σ(Z∗

1) ⊆ σ(V ), it follows that ρ1 ≤ ρ(σ(U)�σ(V )). We
conclude by noting that ρ(σ(U)�σ(V )) = ρC . Q.E.D.

PROOF OF THEOREM 4.2: Let ε > 0 be such that c(x� y) ≥ ε almost every-
where on [0�1]2. Consider f�g ∈ L2[0�1] with

∫
f = ∫

g = 0 and
∫
f 2 = ∫

g2 =
1. Begin by writing∫ ∫

f (x)g(y)C(dx�dy) = 1
2

∫ ∫
(f (x)2 + g(y)2)C(dx�dy)

− 1
2

∫ ∫
(f (x)− g(y))2C(dx�dy)�

Since (f (x)− g(y))2 ≥ 0 and c(x� y)≥ ε almost everywhere, we have∫ ∫
(f (x)− g(y))2C(dx�dy) ≥

∫ ∫
(f (x)− g(y))2c(x� y)dxdy

≥ ε

∫ ∫
(f (x)− g(y))2 dxdy

= 2ε�

Since it is also the case that
∫∫

(f (x)2 + g(y)2)C(dx�dy) = 2, we obtain∫∫
f (x)g(y)C(dx�dy)≤ 1−ε, implying that the maximal correlation of C can-

not exceed 1 − ε. Q.E.D.

PROOF OF THEOREM 4.3: Let Sn denote the class of real-valued functions f
on [0�1] that can be written in the form

f (x)=
n∑

i=1

fi1((i−1)/n�i/n](x)�

where f1� � � � � fn are real numbers. If f�g ∈ Sn, then∫ 1

0

∫ 1

0
f (x)g(y)C(dx�dy)−

(∫ 1

0
f (x)dx

)(∫ 1

0
g(y)dy

)
(A.2)

=
n∑

i=1

n∑
j=1

figjKn(i� j)�

Consequently, n�n is the maximum of the left-hand side of (A.2) over
f�g ∈ Sn such that

∫
f 2 = ∫

g2 = 1. It follows that n�n is the maximum of
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f (x)g(y)C(dx�dy) over f�g ∈ Sn such that

∫
f = ∫

g = 0 and
∫
f 2 = ∫

g2 =
1. Our desired result now follows from the definition of ρC and the fact that⋃

n∈N
Sn is a dense subset of L2[0�1]. Q.E.D.

REFERENCES

BRADLEY, R. C. (2007): Introduction to Strong Mixing Conditions, Vols. 1–3. Heber City: Kendrick
Press. [1,3,4]

LANCASTER, H. O. (1958): “The Structure of Bivariate Distributions,” Annals of Mathematical
Statistics, 29, 719–736. [1,2]

RÉNYI, A. (1959): “On Measures of Dependence,” Acta Mathematica Academiae Scientiarum
Hungaricae, 10, 441–451. [1,2]

SARMANOV, O. V. (1958a): “Maximum Correlation Coefficient (Symmetric Case),” Doklady
Akademii Nauk SSSR, 120, 715–718 (in Russian). English translation: Selected Translations in
Mathematical Statistics and Probability, 4, 271–275 (1963). [1,2]

(1958b): “Maximum Correlation Coefficient (Nonsymmetric Case),” Doklady Akademii
Nauk SSSR, 121, 52–55 (in Russian). [1,2]

(1961): “Investigation of Stationary Markov Processes by the Method of Eigenfunction
Expansion,” Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 60, 238–261 (in Russian).
English translation: Selected Translations in Mathematical Statistics and Probability, 4, 245–269
(1963). [1,2]

Dept. of Economics, University of California, San Diego, 9500 Gilman Drive,
La Jolla, CA 92093-0508, U.S.A.; bbeare@ucsd.edu.

Manuscript received September, 2008; final revision received June, 2009.


