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This supplementary appendix contains proofs of the theorems given in the main
paper.

PROOF OF THEOREM 3.1: Since {Z,} is a stationary Markov chain, it is
known (see Theorems 7.3(b) and 3.29(1I) in Bradley (2007)) that its B-mixing
coefficients satisfy

1
Bi = §||F0,k(x, y) = F)FW v,

where F;, is the joint distribution function of Z, and Z;, and || - ||I1v is total
variation (in the Vitali sense).
From Sklar’s theorem, we thus have

1 1
Bi=> |Ce(F(x), F(y) = FCOF () | < S 1CkCe, ) = 1yl

Equation (2.1) implies that C, inherits the property of absolute continuity
from C. Letting ¢, denote the density of Cy, we now have that 8, < %||ck — 1]
and hence B¢ < i|lcy — 1|,.

As a symmetric square-integrable joint density function with uniform mar-
ginals, ¢ admits the mean square convergent expansion

(Al)  cx,y) =14 Ndi(x)$i(y),
i=1

where the eigenvalues {A;} form a nonincreasing square-summable sequence
of nonnegative real numbers and the eigenfunctions {¢;} form a complete or-
thonormal sequence in L,[0, 1]. Expansions of this form were studied by Lan-
caster (1958), Rényi (1959), and Sarmanov (1958a, 1958b, 1961). Using (2.1),
we deduce that the densities ¢, satisfy

(x, ) =14 ) Al di(x) i),

i=1

© 2010 The Econometric Society DOI: 10.3982/ECTAS8152



2 BRENDAN K. BEARE

which is simply a restatement of a result due to Sarmanov (1961) in terms of
copula functions. We now have

D M) i(y)

i=1

ek — 1=

b

2

and so with two applications of Parseval’s equality, we obtain

00 1/2 0 1/2
e =1l = (Z A?") < Ai“l(z A?) = X e = 1.
i=1

i=1

As observed by Lancaster (1958), Rényi (1959), and Sarmanov (1958a, 1958b,
1961), A; is equal to the maximal correlation of C. Since this quantity is as-
sumed to be less than 1, the proof is complete. Q.E.D.

PROOF OF THEOREM 3.2: Suppose first that p- = 1. As observed by Lan-
caster (1958), Rényi (1959), and Sarmanov (1958a, 1958b), the supremum
in (3.1) is achieved by a specific pair of functions f, g when c is square in-
tegrable. Consequently, for such f, g, we have [[ f(x)g(y)c(x,y)dxdy = 1.
Further, since [ f2 = [g? =1 and the density ¢ has uniform marginals, we
have [[ f(x)*c(x,y)dxdy= [[ g(y)*c(x,y)dxdy=1.1It follows that

1 1
/ / f(x)gy)e(x,y)dxdy
0 0
1/2

1 pl 1/2 1 pl
= </ f f(x)e(x,y)dx dy> (/ / g(y)c(x,y)dx dy) ,
0 0 0 0

and so the Cauchy-Schwarz inequality holds with equality. This can be true
only if the set D = {(x, y): f(x) # g(y)} satisfies ([, c=0.Let A ={x:f(x) >
0} and B = {y:g(y) < 0}. The conditions [ f= [g=0and [f>= [g*=1
ensure that 4 and B have measure strictly between zero and one. Since
(A x B) U (A x B°) € D, we have ff(AxB)U(AC ¢ =0, and hence ¢ =0 al-
most everywhere on (A x B) U (A° x B°).

Suppose next that ¢ = 0 almost everywhere on (A x B) U (A° x B°),
where A, B have measure strictly between zero and one. Let f(x) =1 (x € A)
and g(y) =1 (y ¢ B). It is easily verified that f(x) = g(y) on a subset of [0, 1]*
over which c integrates to 1. Since neither f nor g is constant almost every-
where, it follows that pc = 1. O.E.D.

x B®)

PROOF OF THEOREM 3.3: We will show that C cannot exhibit lower tail de-
pendence when c is square integrable and w; exists. The corresponding result
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for upper tail dependence can be shown in essentially the same way. For any
n e N and any x € (0, 1], we may write

C(x,x) ~. ([ ’
=x+Z/\,~x (/ ¢>l~(2)d2> + &,.(x),
i=1 0

X

where ¢, is defined by this equation. The Cauchy-Schwarz inequality implies

that
x 2 x x
- (2)d <x! d (2)*d
(o) o ([ ) o
= (/x bi(2)* dz).
0

Square integrability of ¢; therefore implies that lim, ¢+ x~1/? fox b:(z)dz=0.
We thus obtain
C(x,x)

lim
x—0t

:xli%i E.(x) < 1o

for each n € N. It thus suffices to show that |||, — 0 as n — oo. Using
Cauchy-Schwarz, we have

1énlleo = |x~! / / (c(u,v)—l—ZAi¢>,~<u>¢,«(v))dudv
0 Jo i1 ©
v oax . 2 1/2
(/ / (C(u,v)—l—z)tid)i(u)@(v)) dudv)
0-Jo i=1
o . 2 1/2
(/ / (c(u,v>—1—2m¢i(u)¢i(v>> dudv) :
0 0 i—1

Convergence of this last term to zero as n — oo is the content of our series
expansion (A.1). Q.E.D.

IA

(o8]

PROOF OF THEOREM 4.1: Since {Z,} is a Markov chain, Theorem 7.5(I)(a)
of Bradley (2007) implies that p, decays geometrically fast if p; < 1. We
thus need only show that p; < pc. Given o-fields A, B C F, let p(A,B) =
sup;,, | Corr( f, &), where the supremum is taken over all random variables f
and g measurable with respect to A and B, respectively, with positive and
finite variance. Since {Z,} is a stationary Markov chain, Theorem 7.3(c) in
Bradley (2007) implies that p; = p(0(Zy), 0(Z;)). Let U, V' be random vari-
ables with joint distribution function C, and let F~! denote the quasi-inverse
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distribution function given by F~'(z) = inf {F(x) > z}. Then Z; = F~'(U) and
Zr = F7'(V') have the same joint distribution as Z, and Z,, and so Propo-
sition 3.6(I)(c) of Bradley (2007) implies that p, = p(o(Z;), 0(Z})). Since
o(Z;) CoU) and o(Z7) <€ a(V), it follows that p; < p(o(U), o(V')). We
conclude by noting that p(o(U), (V) = pc. QO.E.D.

PROOF OF THEOREM 4.2: Let & > 0 be such that ¢(x, y) > & almost every-
where on [0, 1]>. Consider f, g € L,[0, 1] with [ f= [g=0and [ f*= [g* =
1. Begin by writing

1
/ f F0gCid, dy) = 5 / / (F(x) + gD (dx, dy)

1
- z/f(f(x) —g(»)*C(dx, dy).

Since (f(x) — g(y))* >0 and c¢(x, y) > ¢ almost everywhere, we have
//(f(x) —g(»)*C(dx, dy) = //(f(x) —g(y)’c(x, y)dxdy

> 6 / / (F(x) — gy))2dxdy
=2e.

Since it is also the case that [[(f(x)* + g(»)*)C(dx,dy) = 2, we obtain
[[ f(x)g(y)C(dx,dy) <1— &, implying that the maximal correlation of C can-
not exceed 1 — &. QO.E.D.

PROOF OF THEOREM 4.3: Let S, denote the class of real-valued functions f
on [0, 1] that can be written in the form

FG =" filiaiymim ),
i=1

where fi, ..., f, are real numbers. If f, g € S, then

1 1 1 1
(A2) /ff(x)g(y)C(dx,dy)—U f(x)dx></ g(y)dy>
0 0 0 0

- ZZfing,,(i, .

i=1 j=1

Consequently, ng, is the maximum of the left-hand side of (A.2) over
/.8 € S, such that [ f?> = [g*> = 1. It follows that ng, is the maximum of
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[ f(x)g(y»)C(dx,dy) over f,g € S,suchthat [ f=[g=0and [ f*= [g*=
1. Our desired result now follows from the definition of pc and the fact that

U,y Sn 1s @ dense subset of L,[0, 1]. Q.E.D.
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