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Faculty of Economics, University of Tokyo

In their analysis of strategic information transmission, Vincent Crawford and Joel
Sobel (1982) showed the existence of partition equilibria (Theorem 1). Although the
theorem itself is correct, the proof contains some incorrect statements. We present a
counter-example and provide a correct version of the proof.

1. INTRODUCTION

VINCENT CRAWFORD AND JOEL SOBEL (1982) discovered a remarkable property that,
in their general model of strategic information transmission, if there is a partition equi-
librium where the state space [0�1] is partitioned into N intervals, then for any integer
1 ≤ n ≤ N , there is also a partition equilibrium with size n (Theorem 1). While this claim
is true, the proof is built on some incorrect statements. We point this out by means of a
counter-example and propose a correct version of the proof.

Their model consists of a sender S and a receiver R. The state of nature m is a random
variable with density f on its support [0�1], and m is observed only by the sender. After
observing m, the sender costlessly sends an arbitrary message to the receiver. The receiver
observes the message and takes an action y ∈ R. The payoffs of the sender and the receiver
are US(y�m) and UR(y�m), respectively. The payoff functions are twice continuously
differentiable, and each function is strictly concave in y (Ui

11 < 0, i = S�R) and has a
unique maximizer for each m denoted by yi(m)� i = S�R. It is assumed that the ideal
points of the sender and the receiver are distinct; yS(m) �= yR(m) for all m. Moreover,
Ui

12 > 0, i = S�R.
A partition equilibrium is defined to be a perfect Bayesian equilibrium, where (i) the

state space [0�1] is partitioned into N intervals [0� a1]� [a1� a2]� � � � � [aN−1�1] and (ii) the
sender reveals to the receiver which interval contains the realized state m. Lemma 1 of the
paper correctly establishes that (i) any equilibrium is a partition equilibrium and (ii) the
size of partition N is bounded. After Lemma 1, the paper presents Theorem 1, and its
main contents are summarized as follows. Let ȳ(a�a′) be the receiver’s optimal action
when she knows that m lies in [a�a′].
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THEOREM 1′: [1] Partition [0� a1]� [a1� a2]� � � � � [aN−1�1] constitutes a partition equilib-
rium if and only if

US
(
ȳ(ai−1� ai)� ai

) =US
(
ȳ(ai� ai+1)�ai

)
(i = 1�2� � � � �N − 1)� (A)

a0 = 0
(
(11) in the paper

)
� and

aN = 1
(
(12) in the paper

)
�

[2] There exists an integer N(b) > 0 such that a partition equilibrium of every size from 1
to N(b) exists.

[3] Any equilibrium is equivalent to one in this class.

Condition (A) is the key to characterize the equilibrium and it is called the arbitrage
condition. It states that the sender who is just on the boundary of [ai−1� ai] and [ai� ai+1]
(i.e., the sender who knows m = ai) is indifferent between reporting that m is in [ai−1� ai]
and in [ai� ai+1]. Note that (A) defines a second-order difference equation.

Parts [1] and [3] are correctly proved (the last paragraph of page 1438 and onwards).1
We found, however, the proof of part [2] depends on incorrect assertions. They define, on
page 1438,

K(a) := max
{
i| (A) has a solution 0 = a0 < a1 = a < · · ·< ai ≤ 1

}
and argue that the following is true:

If K(a1)=N and K(a) is discontinuous at a = a1� then a satisfies (11) and (12)�2 (*)

This is a key step to prove statement [2] in their proof. However, we found that this
statement can fail when yS(m) < yR(m). More precisely, we found that condition (12)
aN = 1 can fail at the point of discontinuity.

The basic intuition is as follows. The proof correctly observes that, when there is a
solution 0 = a0 < a1 < · · · < aN < 1, in the neighborhood of this solution the terminal
point aN varies continuously with respect to the choice of a1 (note that the second-order
difference equation (A) is being solved with given initial conditions 0 = a0 < a1). The
above assertion basically states that, by a suitable choice of a1, the terminal point aN can
hit 1, and at this point, a solution with the given length (N + 1) disappears (this is the
discontinuous point of K(a) in (*)). However, this claim is not warranted because as we
vary a1, the penultimate point aN−1 can hit aN before the latter reaches 1, and at this
point (A) can cease to have a solution with the given length (N + 1). Indeed, we provide
a counter-example in the next section in which this happens. Because of this property, the
following main implication of the above assertion to prove [2] also fails in our example:

(A) has a solution 0 = a′
0 < a′

1 < · · ·< a′
n = 1 for any 1 ≤ n≤ N(b)� (**)

where N(b) := supa∈(0�1] K(a).

1A minor comment to [1]: Partition equilibrium with size 1, 0 = a0 < a1 = 1, does not satisfy (A) because
(A) is a second-order difference equation and it should be defined on (a0� a1� a2) (here, a2 does not exist). This
is a minor semantic issue that does not cause any difficulty in the proof. This statement can be interpreted as
the fact that the model always has the 1-partition equilibrium where no information is transmitted.

2Page 1438, the fourth line from the bottom. The last part of this sentence should be read as “a1 satisfies
(11) and (12).”
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In the end, we will show that those assertions in the proof are in fact correct provided
that yR(m) < yS(m), and we provide a correct version of the proof for statement [2] (the
first part of Section 3). Then we go on to show how to prove statement [2] when yR(m) <
yS(m) is not satisfied.

2. A COUNTER-EXAMPLE

The following example shows that the statements (*) and (**) can fail when yS(m) <
yR(m). In this example, (A) has a solution 0 = a′

0 < a′
1 < a′

2 < 1 but it fails to have another
solution 0 = a′′

0 < a′′
1 < a′′

2 = 1. This shows that their statement (*) in the previous section
is not true, basically because in this example condition (12) aN = 1 can never be satisfied.
Exact proof that this example violates (*) is given at the end of this section. Their assertion
(**) in the previous section also fails, because in this example N(b) := supa∈(0�1] K(a) ≥ 2.

Let us describe our example. The sender’s utility is

US(y�m) = −y2 + h(m)y − 1
10

�

where h(·) is strictly increasing and satisfies h(m) = 2m− 1
10 if m≤ 2

5 , and if m ≥ 2
5 , h(m)

only slightly increases from h( 2
5)= 7

10 . More precisely,

h(m)− 7
10

< ε if m≥ 2
5

for some small ε > 0. We choose h in such a way that it is twice continuously differen-
tiable. Obviously, such a function h exists. All the assumptions in the paper are satisfied;
US

11 < 0, US
12 > 0, and US is twice continuously differentiable. We assume m is uniformly

distributed over [0�1] and UR(y�m)= −(y −m)2.
First, we show that the ideal points of the sender and the receiver are distinct; yS(m) �=

yR(m) for all m. The first-order condition 0 = US
1 = −2y + h(m) shows yS(m) = h(m)

2 .
Therefore, if m≤ 2

5 ,

yS(m)= m− 1
20

<m = yR(m)�

If m> 2
5 , h(m)

2 < 7
2×10 + ε

2 , and therefore, if ε is small enough,

yS(m) <
7

20
+ ε

2
<

2
5
<m= yR(m)�

Thus, we conclude that yS(m) < yR(m) for all m.
Next, we show that (A) has a solution 0 = a′

0 < a′
1 = 2

5 < a′
2 = 3

5 < 1. When the state of
nature is m= a = 2

5 , the sender’s payoff is factorized as

US

(
y�

2
5

)
= −y2 + 7

10
y − 1

10
= −

(
y − 1

5

)(
y − 1

2

)
�

Note that 1
5 is the receiver’s best reply when she knows m ∈ [0� 2

5 ] (denoted ȳ(0� 2
5)) and

that 1
2 is the receiver’s best reply when she knows m ∈ [ 2

5 �
3
5 ] (denoted ȳ( 2

5 �
3
5)). Hence, the

above expression shows that (A) is satisfied with a0 = 0, a1 = 2
5 , a2 = 3

5 (both sides of the
equation (A) are zero).
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We now show that (A) fails to have another solution 0 = a′′
0 < a′′

1 < a′′
2 = 1. In particular,

we show that the associated condition (A)

US
(
ȳ(0� a1)�a1

) = US
(
ȳ(a1�1)�a1

)
cannot be satisfied with any a = a1. In a 2-partition equilibrium, the state space [0�1] is
partitioned into [0� a] and [a�1], and the receiver chooses ȳ(0� a) = a

2 in the former and
ȳ(a�1)= a+1

2 in the latter. Therefore, the above condition boils down to

g(a) := US

(
a

2
� a

)
−US

(
a+ 1

2
� a

)
= 0� (1)

Our functional form of US implies

g(a) =
(

−a2

4
+ h(a)

a

2
− 1

10

)
−

(
−a2 + 2a+ 1

4
+ h(a)

a+ 1
2

− 1
10

)

= 1
4

+ 1
2
a− 1

2
h(a)�

By plugging in the functional form of h, we obtain

g(a) = 3
10

− 1
2
a if a≤ 2

5
�

which is strictly positive (it is minimized g( 2
5)= 1

10 > 0). For a > 2
5 , we have

g(a) >
1
4

+ 1
2
a− 1

2

(
ε+ 7

10

)

= 1
2
a− 1

10
− ε

2

>
1
2

· 2
5

− 1
10

− ε

2

= 1
10

− ε

2
> 0�

for small enough ε. We conclude that g(a) > 0 for all a and therefore there is no a ∈ [0�1]
that satisfies the required condition g(a)= 0 (condition (1)). Hence, there is no sequence
0 = a′′

0 < a′′
1 < a′′

2 = 1 that satisfies (A).
What happens in this example is that, as we vary a1, the solution to (A) has the property

that the penultimate point a1 can hit the terminal point a2 before the latter reaches 1, and
at that point (A) ceases to have a solution with length 3 (0 = a0� a1� a2). This happens at
a1 = a∗ such that (a0� a1� a2)= (0� a∗� a∗), and the existence of a∗ ∈ ( 2

5 �1) is demonstrated
as follows. a∗ is a solution to

US
(
ȳ(0� a)�a

) = US
(
ȳ(a�a)�a

)
�

Since we consider positive solutions, our definition of US induces that this equation is
equivalent to

h(a)= 3
2
a�
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Consider the following continuous function:

φ(a) := h(a)− 3
2
a�

Note that φ is strictly decreasing in ( 2
5 �1) because h′(a) is almost zero if ε is small enough,

and therefore φ′(a)= h′(a)− 3
2 < 0. The property of h implies

φ

(
2
5

)
= h

(
2
5

)
− 3

2
· 2

5
= 7

10
− 3

5
> 0�

and for small ε,

φ(1)= h(1)− 3
2

· 1 <
7
10

+ ε− 3
2
< 0�

Therefore, there exists a∗ ∈ ( 2
5 �1) such that φ(a∗)= 0, equivalently

US
(
ȳ
(
0� a∗)� a∗) =US

(
ȳ
(
a∗� a∗)� a∗)�

Indeed, a∗ is a counter-example of (*). To show this, we confirm

K
(
a∗) = 1� (i)

K is discontinuous at a= a∗� (ii)

a∗ �= 1
(
(12) does not hold

)
� (iii)

First, to prove (i) we show that there is no a′ ∈ (a∗�1) such that

US
(
ȳ
(
0� a∗)� a∗) =US

(
ȳ
(
a∗� a′)� a∗)�

Computing this equation, we obtain

a′ = 2
(
h
(
a∗) − a∗)�

Recall that 0 =φ(a∗) = h(a∗)− 3
2a

∗. Then the above condition is written as

a′ = a∗�

This is not compatible with the assumption that a′ lies in (a∗�1). This fact implies that
there is no solution to (A) with the initial condition (0 = a0� a

∗) with a length 3 or more.
Hence, (i) holds.

To show (ii), we prove the following claim:

for all a ∈
(

2
5
� a∗

)
� K(a)≥ 2�

Take a ∈ ( 2
5 � a

∗) and solve

US
(
ȳ(0� a)�a

) =US
(
ȳ
(
a�a′)� a)

�
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As we have seen above, we obtain a′ = 2(h(a) − a). Now we show that a′ ∈ (a�1). From
the strict monotonicity of φ,

a′ − a= 2h(a)− 3a= 2φ(a) > 2φ
(
a∗) = 0�

and for small ε,

1 − a′ = 1 − 2h(a)+ 2a > 1 − 2h(a)+ 2 · 2
5

= 9
5

− 2h(a) >
9
5

− 7
5

− 2ε > 0

holds. Therefore, 0 < a< a′(< 1) is a solution to (A), and consequently,

lim inf
a→a∗−0

K(a) ≥ 2 > 1 =K
(
a∗)�

which implies (ii).
(iii) is obviously true, so that a∗ does not satisfy what (*) states.

3. CORRECTIONS TO THE PROOF

Given the correct statements [1] in Theorem 1′ and Lemma 1 in the paper (which shows
that there is the maximum size N(b) of partition equilibria), it is clear that statement [2]
of Theorem 1′ is equivalent to the following.

CLAIM 1: If the second-order difference equation (A) has a solution 0 = a′
0 < a′

1 < · · · <
a′
N = 1, then for any integer 2 ≤ n ≤N , it has another solution 0 = a′′

0 < a′′
1 < · · ·< a′′

n = 1.

In this section, we directly prove this claim to supply the correct proof of statement [2].
Obviously, the above claim is true if the following holds:

For any integer n ≥ 2, if the second-order difference equation (A) has a solution
0 = a′

0 < a′
1 < · · ·< a′

n < 1, it has another solution 0 = a′′
0 < a′′

1 < · · ·< a′′
n = 1. (#)

Vincent Crawford and Joel Sobel (1982) basically tried to prove statement [2] of Theo-
rem 1′ by the above assertion, but our counter-example shows that it is not valid if yR(m) >
yS(m). We first show that this assertion is in fact true provided that yR(m) < yS(m).3 Then
we go on to show that Claim 1 also holds when yR(m) < yS(m) is not satisfied.

The following lemma is the key to prove Claim 1, and it requires yR(m) < yS(m). This
lemma guarantees that, as we vary a1, an never hits an+1 before the latter reaches 1.

LEMMA 1: Suppose that yS(m) > yR(m) for all m ∈ [0�1]. Then, there exists ε > 0 such
that for any partial partition (a0� � � � � aN) satisfying (A),

an+1 − an > ε (n= 1� � � � �N − 1)�

3This implies that K(a) jumps down by 1 and condition (12) is satisfied at any discontinuity point, as asserted
in the proof of the paper. Hence, their statements in the proof are correct when yR(m) < yS(m). Since it is
possible to prove Claim 1 directly without introducing function K(a), we chose this simpler way to provide a
correct version of the proof, rather than closely following their original argument that is given in terms of the
properties of function K(a).
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REMARK 1: The original proof correctly observes a similar property an+2 − an > ε for
some ε > 0, which holds under the general assumption yS(m) �= yR(m) for all m, but this
is not enough to prove (#), as our counter-example shows.

PROOF: Since yS and yR are strictly increasing, their inverses are well-defined and con-
tinuous on a compact domain [yS(0)� yR(1)]. Therefore, miny(y

R−1
(y) − yS−1

(y)) exists,
and it is strictly positive because yS(m) > yR(m). We denote this by ε. The arbitrage con-
dition (A) states that the sender who knows m= an has identical payoff at ȳ(an−1� an) and
ȳ(an� an+1), and the concavity of the payoff implies that the peak of the payoff, which is
achieved by yS(an), is in between those points;

ȳ(an−1� an) < yS(an) < ȳ(an�an+1)�

Moreover, the monotonicity of ȳ also induces

ȳ(an� an+1) < ȳ(an+1� an+1)= yR(an+1)�

Thus, we have obtained

yS(an) < yR(an+1)�

From the definition of ε and the monotonicity of yR−1,

ε ≤ yR−1(
yS(an)

) − yS−1(
yS(an)

)
< yR−1(

yR(an+1)
) − yS−1(

yS(an)
)

= an+1 − an� Q.E.D.

REMARK 2: This inequality does not necessarily hold for n = 0 (i.e., it is not necessarily
true that a1 − a0 > ε) because a0 and a1 are the initial conditions for the second-order
difference equation (A) and therefore a0 < a1 can be chosen arbitrarily.

Next, we show the following lemma to formally prove the continuity of the solution to
(A) with respect to the initial conditions.

LEMMA 2: Let g(x� y) be a continuous function defined on W ⊂R
2 such that, for each x,

g(x� y) is stictly decreasing in y . If g(x′� y ′) = 0, then there exist an open neighborhood of x′

denoted V ⊂ {x|(x� y) ∈ W } and a continuous function φ : V → R such that φ(x′)= y ′ and
g(x�φ(x)) = 0 for all x ∈ V .

REMARK 3: This is a slight generalization of the implicit function theorem, where the
assumption ∂g/∂y �= 0 in the implicit function theorem is replaced with g being strictly
decreasing in y . The proof relies on the intermediate value theorem. If we employ an
additional assumption that the probability density function f (m) is continuous (Vincent
Crawford and Joel Sobel (1982) did not assume this), in what follows we can just use
the standard implicit function theorem instead of this lemma because the continuity of f
implies the differentiability of ȳ .

PROOF: For any given ε > 0, choose y and y such that (i) y < y0 < y , (ii) (x0� y) ∈ W

and (x0� y) ∈ W , and (iii) y−y < ε. Since g is strictly decreasing in y , we obtain g(x0� y) >
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0 and g(x0� y) < 0. Continuity of g implies that there is δ > 0 such that |x1 − x0| < δ ⇒
g(x1� y) > 0 and g(x1� y) < 0. Continuity of g in y and the intermediate value theorem
imply that, when |x1 − x0| < δ, there is y1 ∈ (y� y) such that g(x1� y1) = 0. Given that g
is strictly decreasing in y , y1 is unique for any given x1. Choose any pair of ε and δ in
the above statement and denote the pair by (ε�δ). The above argument shows that, for
V = {x1| |x1 − x0| < δ}, there is a unique function φ : V → R that satisfies φ(x0) = y0

and g(x1�φ(x1)) = 0 for all x1 ∈ V , where φ(x1) is equal to y1 in the above argument.
Furthermore, φ is continuous at x0 because for any ε > 0, there is δ > 0 such that |x1 −
x0|< δ ⇒ |φ(x1)−φ(x0)| = |y1 −y0|< ε. The last inequality holds because y0� y1 ∈ (y� y)

and y − y < ε. Applying the same argument for any x ∈ V shows that φ is continuous
on V . Q.E.D.

Next, recall that y(a�b) is the maximizer of F(a�b� y) := ∫ b

a
UR(y�m)f (m)dm. Since

F is continuous and strictly concave in y , Berge’s maximum theorem shows that y(a�b) is
continuous. Inspection of the first-order condition shows that y(a�b) is strictly increasing
in a and b.

Now we are ready to formally prove the continuity of the solution of (A) with respect to
the initial conditions, which was rather informally alluded to in the proof of Theorem 1 in
Vincent Crawford and Joel Sobel (1982). This lemma is proved by repeated applications
of Lemma 2.

LEMMA 3: If the second-order difference equation (A) has a solution 0 = a′
0 < a′

1 < · · · <
a′
n < 1, then there exist

V : an open neighborhood of a′
1 and

continuous φi : V → R (i = 2� � � � � n)

such that

φi

(
a′

1

) = a′
i

for all i, and (
0� a1�φ2(a1)� � � � �φn(a1)

)
satisfies (A)

for all a1 ∈ V .

PROOF: We employ induction on i = 2� � � � � n. First, we prove the induction part:
if there are continuous functions φi−2(a1) and φi−1(a1) such that φi−2(a

′
1) = a′

i−2 and
φi−1(a

′
1) = a′

i−1 defined on an open set Vi−1, then there is a continuous function φi(a1)
defined on an open neighborhood of a′

1 denoted by Vi ⊂ Vi−1 such that φi(a
′
1) = a′

i and
(φi−2(a1)�φi−1(a1)�φi(a1)) satisfies (A) for all a1 ∈ Vi.

Proof of the induction part: Define

g(a1� ai) :=US
(
y
(
φi−2(a1)�φi−1(a1)

)
�φi−1(a1)

) −US
(
y
(
φi−i(a1)�ai

)
�φi−1(a1)

)
�

Note that g is continuous. Furthermore, since a′
l−2� a

′
l−1 and a′

l satisfy (A),

g
(
a′

1� a
′
i

) :=US
(
y
(
a′
i−2� a

′
i−1

)
� a′

i−1

) −US
(
y
(
a′
i−1� a

′
i

)
� a′

i−1

) = 0�
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This implies that the peak of strictly concave function US(·� a′
i−1) lies in interval

[y(a′
i−2� a

′
i−1)� y(a

′
i−1� a

′
i)] and therefore US

1 (y(a
′
i−1� a

′
i)� a

′
i−1) < 0 (recall US

1 = ∂US/∂y).
Continuity of US

1 and the fact that y(ai−1� ai) is continuous and strictly increasing in ai im-
ply that there is a small enough open neighborhood of (a′

1� a
′
i) denoted W ⊂ Vi−1 ×R such

that US(y(φi−i(a1)�ai)�φi−1(a1)) is strictly decreasing in ai (and therefore so is g(a1� ai))
on W . Hence, all the assumptions in Lemma 2 are satisfied (if g is viewed as a function
defined on W ) and the conclusion of the induction part holds.

Next, observe that φ0(a1) ≡ 0 and φ1(a1) = a1 are continuous and defined on
V1 := R. This shows that the premise of the induction part is true for i = 2. Therefore,
the conclusion of the induction part holds for all i = 2� � � � � n, and the lemma follows for
V = Vn. Q.E.D.

Now we are ready to state our key result.

THEOREM 1: Statement (#) and therefore Claim 1 hold if yS(m) > yR(m) for all m.

PROOF: Assume that (A) has a solution 0 = a′
0 < a′

1 < · · ·< a′
n < 1. Let

D := {
a1 ∈ (0�1) : there exists 0 < a1 < · · ·< an ≤ 1 satisfying (A)

}
�

Our assumption implies that D is not empty. Let a′′
1 := supD. Then, there exists

a sequence in D converging to a′′
1. We denote this by {a(i)

1 }i∈N. Also, we denote
the solution to (A) associated with a(i)

1 by (0� a(i)
1 � a(i)

2 � � � � � a(i)
n ). Since the sequence

{(a(i)
1 � a(i)

2 � � � � � a(i)
n )}i∈N lies in a compact set [0�1]n, there exists a convergent subsequence

{(a(ik)

1 � a
(ik)

2 � � � � � a
(ik)
n )}k∈N that converges to a certain point (a′′

1� a
′′
2� � � � � a

′′
n). By definition,

the subsequence satisfies (A):

US
(
ȳ
(
a
(ik)

l−1 � a
(ik)

l

)
� a

(ik)

l

) = US
(
ȳ
(
a
(ik)

l � a
(ik)

l+1

)
� a

(ik)

l

)
�

By letting k→ ∞, we get

US
(
ȳ
(
a′′
l−1� a

′′
l

)
� a′′

l

) = US
(
ȳ
(
a′′
l � a

′′
l+1

)
� a′′

l

)

because US and ȳ are continuous. Therefore, (0 = a′′
0� a

′′
1� � � � � a

′′
n) satisfies (A). Our as-

sumption 0 < a1 and a1 ∈ D imply a′′
1 > 0 because a′′

1 = supD ≥ a1 > 0. In addition,
Lemma 1 shows that a′′

1� a
′′
2� � � � � a

′′
n are all distinct. Thus, we have obtained 0 = a′′

0 < a′′
1 <

a′′
2 < · · · < a′′

n that satisfies (A). Last, we show a′′
n = 1. If not, Lemma 3 shows that there

exists an open neighborhood V of a′′
1 such that each a0

1 ∈ V (in particular, some a0
1 > a′′

1)
lies in D. This contradicts the fact that a′′

1 = supD. Therefore, (A) has another solution
0 = a′′

0 < a′′
1 < · · ·< a′′

n = 1. Q.E.D.

The above result implies that Theorem 1 in the paper holds when yS(m) > yR(m) for
all m. Now we show that Claim 1 and therefore Theorem 1 are also true in general.
When the reverse inequality yS(m) < yR(m) holds for all m, we can employ the symmetric
argument by solving the second-order difference equation (A) “from the top” with the
initial conditions aN−1 < aN = 1 to prove Theorem 1. Namely, the symmetric argument
shows the following sufficient condition to prove Claim 1 when yS(m) < yR(m):

For any integer n ≥ 2, if the second-order difference equation (A) has a solution
0 < a′

0 < · · ·< a′
n−1 < a′

n = 1, it has another solution 0 = a′′
0 < · · ·< a′′

n−1 < a′′
n = 1. (##)
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Last, we note that there are no other cases under the maintained assumption yS(m) �=
yR(m) for all m. This is because if there are m′ and m′′ such that yS(m′) > yR(m′) and
yS(m′′) < yR(m′′), then the continuity of yS(·) and yR(·) implies that there is m0 such that
yS(m0) = yR(m0), which contradicts the maintained assumption. Hence, we have shown
that statement [2] of Theorem 1′ and therefore Theorem 1 in Vincent Crawford and Joel
Sobel (1982) are true.
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