Econometrica: May, 2017, Volume 85, Issue 3
Rushes in Large Timing Games
https://doi.org/10.3982/ECTA13089
p. 871-913
Axel Anderson, Lones Smith, Andreas Park
We develop a continuum player timing game that subsumes standard wars of attrition and pre‐emption games, and introduces a new rushes phenomenon. Payoffs are continuous and single‐peaked functions of the stopping time and stopping quantile. We show that if payoffs are hump‐shaped in the quantile, then a sudden “rush” of players stops in any Nash or subgame perfect equilibrium.
Fear relaxes the first mover advantage in pre-emption games, asking that the least quantile beat the average; greed relaxes the last mover advantage in wars of attrition, asking just that the last quantile payoff exceed the average. With greed, play is inefficiently late: an accelerating war of attrition starting at optimal time, followed by a rush. With fear, play is inefficiently early: a slowing pre-emption game, ending at the optimal time, preceded by a rush. The theory predicts the length, duration, and intensity of stopping, and the size and timing of rushes, and offers insights for many common timing games.