Econometrica: Sep, 2010, Volume 78, Issue 5
Identification and Estimation of a Discrete Game of Complete Information
https://doi.org/10.3982/ECTA5434
p. 1529-1568
Patrick Bajari, Han Hong, Stephen P. Ryan
We discuss the identification and estimation of discrete games of complete information. Following Bresnahan and Reiss (1990, 1991), a discrete game is a generalization of a standard discrete choice model where utility depends on the actions of other players. Using recent algorithms to compute all of the Nash equilibria to a game, we propose simulation‐based estimators for static, discrete games. We demonstrate that the model is identified under weak functional form assumptions using exclusion restrictions and an identification at infinity approach. Monte Carlo evidence demonstrates that the estimator can perform well in moderately sized samples. As an application, we study entry decisions by construction contractors to bid on highway projects in California. We find that an equilibrium is more likely to be observed if it maximizes joint profits, has a higher Nash product, uses mixed strategies, and is not Pareto dominated by another equilibrium.
Supplemental Material
Supplement to "Identification and Estimation of a Discrete Game of Complete Information"
This appendix specializes the arguments for identification to the two by two game.
View pdf
Supplement to "Identification and Estimation of a Discrete Game of Complete Information"
A zip file containing data and programs for the paper.
View zip