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In Section S1 of this supplement, we provide the replication of the proof for large-
sample properties of the maximum-likelihood (ML) estimator.

S1. Large-sample properties of the ML estimator

In this section, we establish the large-sample properties of the ML estimator solved by a
constrained optimization approach. Recall that the constrained optimization formula-
tion of the ML estimation problem is

max
(θ�P�V)

1
M

L(Z; V�P�θ)

subject to V = ΨV(V�P�θ)� (S1)

P = ΨP(V�P�θ)�

We formulate the ML estimation problem (S1) in the framework of Aitchison and Sil-
vey (1958). In Section S1.1, we state the theorem and proves existence, consistency, and
asymptotic normality of the ML estimator under a set of conditions analogous to those
provided in Aitchison and Silvey (1958). Similar results are also stated in Section 10.3 in
Gourieroux and Monfort (1995).

Let γ = (V�P�θ) ∈ R
r represent the vector containing the choice probabilities, ex-

pected value functions, and structural parameters of the dynamic game. A solution of
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the dynamic game satisfies the system of equations

V −ΨV(V�P�θ) = 0�
(S2)

P −ΨP(V�P�θ) = 0�

Let h, a function from R
r to R

s with h(γ) = 0, represent the system of constraint equa-
tions (S2) above. The ML estimator solves the constrained optimization problem

max
γ

1
M

L(Z;γ)
(S3)

subject to h(γ) = 0�

where Z denotes observed data and L(Z;γ) is the logarithm of the likelihood function

L(Z;γ) = log

(
M∏

m=1

T∏
t=1

N∏
i=1

ΨP
i

(
āmt
i |x̄mt; V�P�θ

))

=
M∑

m=1

log

(
T∏
t=1

N∏
i=1

ΨP
i

(
āmt
i |x̄mt; V�P�θ

))
�

For markets m = 1�2� � � � �M , let zm be the vector of observations with probability
density function f (zm�γ0), where γ0 is the true parameter vector of the data generat-
ing process. Here f (zm�γ) is given by

∏T
t=1

∏N
i=1 Pi(ā

mt
i |x̄mt), and the random vectors zm

are independently and identically distributed across markets. We rewrite the objective
function as

L(Z;γ)=
M∑

m=1

log f (zm�γ)�

Let L(Z�γ�λ) = 1
ML(Z;γ) + h(γ)′λ be the Lagrangian function, where the vector of La-

grange multipliers is λ ∈R
s. The ML estimator γ̂ , along with Lagrange multipliers λ̂, are

a solution to the system of equations

1
M

∇γL(Z;γ)+ ∇γh(γ)
Tλ = 0�

(S4)
h(γ) = 0�

S1.1 Existence, consistency, and asymptotic normality

Theorem S1 establishes the large-sample properties of the ML estimator. The proof and
its required assumptions are adapted from Aitchison and Silvey (1958). We use F and
H to label the assumptions required on the likelihood and constraint functions, respec-
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tively. The assumptions are as follows.

(F1) There is a true γ0 ∈ R
r , and for all γ within an α neighborhood N α

γ0
= {γ :

‖γ − γ0‖ ≤ α}, the following statements hold:

(a) There exist probability density functions f (z�γ) with z ∈R
q.

(b) The derivatives ∂ log f (z�γ)
∂γi

, ∂2 log f (z�γ)
∂γi ∂γj

, and ∂3 log f (z�γ)
∂γi ∂γj ∂γk

exist, for i� j = 1� � � � � s and k =
1� � � � � q.

(c) The first and second derivatives ∂ log f (z�γ)
∂γi

and ∂2 log f (z�γ)
∂γi ∂γj

are continuous and

bounded by finitely integrable functions F1(z) and F2(z), and the third derivatives
∂3 log f (z�γ)
∂γi ∂γj ∂γk

are bounded by a function F3(z) with a finite expectation for i� j = 1� � � � � s and

k= 1� � � � � q.

(F2) The information matrix I(γ0) = −E[ ∂2 log f (z�γ0)
∂γ ∂γ ′ ] exists and is positive definite

with minimum latent root μ0.

(H1) There is a continuous function h(γ) : Rr �→ R
s such that h(γ0) = 0, s < r and for

all γ ∈ N α
γ0

, the following statements hold:

(a) The partial derivatives ∂hk(γ)
∂γi

exist and are continuous for i = 1� � � � � r and k =
1� � � � � s.

(b) The partial derivatives ∂2hk(γ)
∂γi ∂γj

exist and are bounded for i� j = 1� � � � � r and k =
1� � � � � s.

(c) The matrix ∇γh(γ0) is of rank s.

Theorem S1. Suppose assumptions F1, F2, and H1 hold. Then the following statements
hold:

(a) Existence. For an arbitrarily small δ > 0 and any 0 < ε < 1, there exists Mε�δ such
that if M >Mε�δ, there exists with probability greater than 1 − ε a solution (γ̂� λ̂) to the
constrained maximum-likelihood problem defined by (S4) with ‖γ̂ − γ0‖< δ.

(b) Consistency Under Uniqueness. If there exists M0 such that a solution to (S4) is

unique for all M >M0, then γ̂
p→ γ0.

(c) Asymptotic Normality. We have
√
M(γ̂ − γ0� λ̂)

d→ N (0�Σ), where Σ = (Σγ

0
0
Σλ

)
.

Let I0 = I(γ0), let Ir be the r × r identity matrix, and let H0 = ∇γh(γ0) ∈R
s×r . Then Σγ is

the r×r matrix I−1
0 (Ir −HT

0 (H0I−1
0 HT

0 )
−1H0I−1

0 ) and Σλ is the s×s matrix (H0I−1
0 HT

0 )
−1.

The rank of Σγ is r − s.

Following the steps in Aitchison and Silvey (1958), we prove existence and consis-
tency under uniqueness in Section S1.1.1, and asymptotic normality in Section S1.1.2.

S1.1.1 Proof of existence and consistency Let ‖ · ‖ denote the norm operator in Eu-
clidean space. Denote an α neighborhood of γ0 using N α

γ0
= {γ : ‖γ − γ0‖ ≤ α}. Let
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δ < min{α�1}, and consider γ ∈ N δ
γ0

. First, expand (S4) about γ0 and obtain

1
M

∇γL(Z�γ0)+ 1
M

∂2L(Z�γ0)

∂γ2 (γ − γ0)+ 1
M

r̃1(Z�γ)+ ∇γh(γ)
Tλ= 0�

(S5)
h(γ0)+ ∇γh(γ0)(γ − γ0)+ r̃2(γ) = 0�

where r̃1 and r̃2 denote remainder terms involving higher order derivatives. From F1 and
H1,

(i) 1
M ∇γL(Z�γ0)+ 1

M r̃1(Z�γ)= op(1)+ op(‖γ − γ0‖),

(ii) − 1
M

∂2L(Z�γ0)
∂γ ∂γ ′ − I(γ0) = op(1),

(iii) r̃2(γ) =O(‖γ − γ0‖2),

(iv) h(γ0) = 0.

Substituting (i)–(iv) into system (S5) leads to

−I(γ0)(γ − γ0)+ ∇γh(γ)
Tλ+ op(1)− op(1)(γ − γ0)+ op

(‖γ − γ0‖
) = 0�

(S6)
∇γh(γ0)(γ − γ0)+O

(‖γ − γ0‖2) = 0�

Since δ < 1, we can rewrite equation (S6) as

−I(γ0)(γ − γ0)+ ∇γh(γ)
Tλ+ op(1) = 0� (S7)

∇γh(γ0)(γ − γ0)+O
(‖γ − γ0‖2) = 0� (S8)

Assumptions F2 and H1(c) allow us to premultiply (S7) by ∇γh(γ0)I(γ0)
−1 and obtain

the equation

−∇γh(γ0)(γ − γ0)+ ∇γh(γ0)I(γ0)
−1∇γh(γ)

Tλ+ op(1) = 0� (S9)

Assumptions F2 and H1(c) imply that ∇γh(γ0)I(γ0)
−1∇γh(γ0)

T is invertible. When δ

is sufficiently small, ∇γh(γ0)I(γ0)
−1∇γh(γ)

T will also be invertible. Inverting (S9) and
substituting in equation (S8) yields

λ = [∇γh(γ0)I(γ0)
−1∇γh(γ)

T]−1(∇γh(γ0)(γ − γ0)
) + op(1)

= [∇γh(γ0)I(γ0)
−1∇γh(γ)

T]−1(
O

(‖γ − γ0‖2)) + op(1) (S10)

= O
(‖γ − γ0‖2) + op(1)�

Substitute (S11) back into (S7). Consolidating the op(1) terms, we have

−I(γ0)(γ − γ0)+ ∇γh(γ)
TO

(‖γ − γ0‖2) + op(1) = 0� (S11)

Assumption H1(b) allows us to rewrite (S11) as

−I(γ0)(γ − γ0)+ δ2v(γ)+ op(1) = 0� (S12)

where v(γ) is a bounded continuous function of γ , so that ‖v(γ)‖ <K.
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We will now make use of a result that is equivalent to Brouwer’s fixed-point theo-
rem. Interested readers may find a proof of the following lemma in Aitchison and Silvey
(1958).

Lemma. If g is a continuous function mapping R
r into itself with the property that, for

every γ such that ‖γ‖ = 1, γ′g(γ) < 0, then there exists a point γ̂ such that ‖γ̂‖ < 1 and
g(γ̂) = 0.

From (S12), we define a function g on the unit sphere in R
r as

g

(
γ − γ0

δ

)
= −I(γ0)(γ − γ0)+ δ2v(γ)+ op(1)� (S13)

Fix ε such that 0 < ε< 1. Pick δ small and let Mε�δ be such that for any M >Mε�δ, we have
Pr(‖op(1)‖ < δ2) > 1 − ε. When M is sufficiently large, we then have with probability
greater than 1 − ε that

1
δ
(γ − γ0)

Tg

(
γ − γ0

δ

)

= −1
δ
(γ − γ0)

TI(γ0)(γ − γ0)+ δ(γ − γ0)
Tv(γ)+ 1

δ
(γ − γ0)

Top(1) (S14)

≤ −1
δ
μ0‖γ − γ0‖2 + δK‖γ − γ0‖ + δ2

δ
‖γ − γ0‖�

where the inequality follows from assumptions F2 and H1(b). Choosing γ such that δ =
‖γ − γ0‖, we have with probability greater than 1 − ε that

1
δ
(γ − γ0)

Tg

(
γ − γ0

δ

)
≤ −δμ0 + δ2K + δ2 < 0 (S15)

if δ is sufficiently small and M is sufficiently large.
Applying the lemma, we have that for an arbitrarily small δ > 0, and any 0 < ε < 1,

there exists Mε�δ such that if M > Mε�δ, there is, with probability greater than 1 − ε, a
solution to our problem with ‖γ̂ − γ0‖< δ. Then, as long as the solution to problem (S4)
is unique when M is sufficiently large, the solution γ̂ is consistent.

S1.1.2 Proof of asymptotic normality Suppose that (γ̂� λ̂) is a solution to the system
of equations (S4). Further suppose that the solution to problem (S4) is unique when
M is sufficiently large, so that the solution is consistent. At (γ̂� λ̂), the system of equa-
tions is

1
M

∂2L(Z�γ0)

∂γ2 (γ̂ − γ0)+ 1
M

r̃1(Z� γ̂)+ ∇γh(γ̂)
Tλ̂= − 1

M
∇γL(Z�γ0)�

(S16)
∇γh(γ0)(γ̂ − γ0)+ r̃2(γ̂) = 0�
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We can rewrite (S16) by grouping the remainder terms with the expected value of the
derivatives at the true value of γ0:

−(
I(γ0)+ Î

)
(γ̂ − γ0)+ (∇γh(γ0)

T + Ĥ
)
λ̂ = − 1

M
∇γL(Z�γ0)�

(S17)(∇γh(γ0)+ H̃
)
(γ̂ − γ0) = 0�

Because γ̂ is consistent, we have Î = O(‖γ̂ − γ0‖) + op(1) = op(1), Ĥ = O(‖γ̂ − γ0‖) =
op(1), and H̃ = O(‖γ̂ − γ0‖)= op(1).

Let I0 = I(γ0) and H0 = ∇γh(γ0). The linear system (S17) in matrix form is[−(I0 + Î) (HT
0 + Ĥ)

(H0 + H̃) 0

]
·
[
γ̂ − γ0

λ̂

]
=

[− 1
M ∇γL(Z�γ0)

0

]
� (S18)

Assumptions F2 and H1 imply that the matrix
[−I0

H0

HT
0

0

]
is nonsingular. If M is suffi-

ciently large, the matrix
[−(I0+Î)

(H0+H̃)

(HT
0 +Ĥ)

0

]
will also be nonsingular with arbitrarily high

probability. Since − 1√
M

∇γL(Z�γ0)
d→ N (0�I0), we can invert system (S18) and apply

Slutsky’s theorem to get a sandwich variance,

√
M

[
γ̂ − γ0

λ̂

]
d→ N

(
0�

[
Σγ 0
0 Σλ

])
�

where Σγ is the r × r matrix I−1
0 (Ir − HT

0 (H0I−1
0 HT

0 )
−1H0I−1

0 ) and Σλ is the s × s ma-

trix (H0I−1
0 HT

0 )
−1. The rank of Σγ is r − s, which represents the number of structural

parameters in the model. This completes the proof of asymptotic normality.
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