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This online material contains six appendices to the paper. Appendix A proves Propo-
sition 1 in the paper. Appendix B derives the stationary equilibrium. Appendix C stud-
ies the bubbly steady state. Appendix D provides the log-linearized equilibrium system
around the bubbly steady state. Appendix E presents a table of business cycle moments.
Appendix F presents a robustness analysis.

Appendix A: Proof of Proposition 1 in the paper

We use a conjecture and verification strategy to find the decision rules at the firm level.
We first study the optimal investment problem by fixing the capacity utilization rate ujt .
Using (14) and (16), we can write firm j’s dynamic programming problem as
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For εjt ≤ Pt/Qt , Ijt = 0. Optimizing overLjt+1 yieldsQLt = 1/Rft . For εjt+1 ≥ Pt/Qt , the op-
timal investment level must reach the upper bound in the above investment constraint.
We can then immediately derive the optimal investment rule in (18). In addition, the
credit constraint (17) must bind so that

1
Rft

L
j
t+1 =QtξtKjt +Bt�τ� (A.3)

Substituting the optimal investment rule andQLt = 1/Rft into (A.1) yields
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Since ujt is determined before observing εjt , it solves the problem
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whereGt is defined by (20). We then obtain the first-order condition

Rt(1 +Gt)=Qtδ′(ujt )� (A.6)

Since δjt = δ(ujt ) is convex, this condition is also sufficient for optimality. From this con-
dition, we can immediately deduce that optimal ujt does not depend on firm identity so
that we can remove the superscript j.

By defining δt ≡ δ(ut), (A.4) becomes
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where Ljt+1/Rft is given by (A.3). Matching coefficients yields
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and
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Using (14), we then obtain (21), and (22) and (23).

Appendix B: Stationary equilibrium

We define the transformed variables

C̃t ≡ Ct

Γt
� Ĩt ≡ It

ZtΓt
� Ỹt ≡ Yt

Γt
� K̃t ≡ Kt

Γt−1Zt−1
�

P̃st ≡ Pst
Γt
� B̃at ≡ Bat

Γt
� X̃t ≡ Xt

ΓtZt
� W̃t ≡ Wt

Γt
�

Q̃t ≡QtZt� P̃t = PtZt� R̃t =RtZt� Λ̃t ≡ΛtΓt�

where Γt = Z
α/(1−α)
t At . The other variables are stationary and there is no need to

scale them. To be consistent with a balanced growth path, we also assume that K0t =
Γt−1Zt−1K0, whereK0 is a constant.

The six shocks in the model are given as follows.

1. The permanent TFP shock:

A
p
t =Apt−1λat� lnλat = (1 − ρa) ln λ̄a + ρa lnλa�t−1 + εat � (B.1)

2. The transitory TFP shock:

lnAmt = ρam lnAmt−1 + εam�t � (B.2)

3. The IST shock:

Zt =Zt−1λzt� lnλzt = (1 − ρz) ln λ̄z + ρz lnλz�t−1 + εzt � (B.3)

4. The sentiment shock:

lnθt = (1 − ρθ)θ̄+ ρθ lnθt−1 + εθ�t � (B.4)

5. The labor shock:

lnψt = (1 − ρψ) ln ψ̄+ ρψ lnψt−1 + εψt� (B.5)

6. The financial shock:

lnζt = (1 − ρζ) ln ζ̄ + ρζ lnζt−1 + εζt �

Here, all innovations are mutually independent and are independently and identically
distributed normal random variables.
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Denote by gγt ≡ Γt/Γt−1 the growth rate of Γt . Denote by gγ the nonstochastic steady
state of gγt , satisfying

lngγ ≡ α

1 − α ln λ̄z + ln λ̄a� (B.6)

On the nonstochastic balanced growth path, investment and capital grow at the rate
of λ̄I ≡ gγλ̄z ; consumption, output, wages, and bubbles grow at the rate of gγ ; and the
rental rate of capital, Tobin’s marginal Q, and the relative price of investment goods de-
crease at the rate λ̄z .

After the transformation described in Section 3, we can derive a system of 15
equations for 15 transformed variables: {C̃t � Ĩt � Ỹt �Nt� K̃t�ut� Q̃t� X̃t� P̃t� W̃t� R̃t�mt� B̃at �
Rf t� Λ̃t}.

1. Resource constraint:

C̃t +
[

1 + Ω

2

(
Ĩt

Ĩt−1
gztgγt − λ̄I

)2]
Ĩt = Ỹt� (B.7)

where gzt =Zt/Zt−1.

2. Aggregate investment:

Ĩt =
(
αỸt + ζtQ̃tX̃t + B̃at

)1 −Φ(
ε∗
t

)
P̃t

� (B.8)

where ε∗
t = P̃t/Q̃t .

3. Aggregate output:

Ỹt = (utX̃t)αN1−α
t � (B.9)

4. Labor supply:

(1 − α) Ỹt
Nt
Λ̃t =ψt� (B.10)

5. The law of motion for capital:

K̃t+1 = (1 − δt)X̃t + Ĩt Σ
(
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t

)
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t

) � (B.11)
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6. Capacity utilization:

α
Ỹt

utX̃t
(1 +Gt)= Q̃tδ′(ut)� (B.12)
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where
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7. MarginalQ:

Q̃t = β(1 − δe)Et Λ̃t+1
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gzt+1gγt+1

[
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]
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8. Effective capital stock used in production:

X̃t = 1 − δe
gztgγt

K̃t + δeK0� (B.14)

9. Euler equation for investment goods producers:

P̃t = 1 + Ω

2
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)(
Ĩt+1

Ĩt

)2

gzt+1gγt+1�

10. The wage rate:

W̃t = (1 − α) Ỹt
Nt
� (B.16)

11. The rental rate of capital:

R̃t = αỸt

utX̃t
� (B.17)

12. Evolution of the number of bubbly firms:

mt =mt−1(1 − δe)θt−1 + δeω� (B.18)

13. Evolution of the total value of the bubble:

B̃at = βEt Λ̃t+1

Λ̃t
B̃at+1(1 +Gt+1)(1 − δe)θt mt

mt+1
� (B.19)

14. The risk-free rate:

1
Rft

= βEt Λ̃t+1

Λ̃t

1
gγt+1

(1 +Gt+1)(1 − δe)� (B.20)

15. Marginal utility for consumption:

Λ̃t = 1

C̃t − hC̃t−1/gγt
−βEt h

C̃t+1gγt+1 − hC̃t
� (B.21)



6 Miao, Wang, and Xu Supplementary Material

Appendix C: Steady state

The transformed system presented in Appendix B has a nonstochastic steady state. We
eliminate W̃t and R̃t , and then obtain a system of 15 equations for 15 steady-state values
{C̃� Ĩ� Ỹ �N� K̃�u� Q̃� X̃� P̃� W̃ � R̃�m� B̃a�Rf � Λ̃}, where we have removed time subscripts.
We assume that the function δ(·) is such that the steady-state capacity utilization rate is
equal to 1. In addition, we set Q̃= 1, which pins downG.

1. Resource constraint:

C̃ + Ĩ = Ỹ � (C.1)

where we have used the fact that λ̄I = λ̄zgγ .

2. Aggregate investment:

Ĩ = (
αỸ + ζ̄Q̃X̃ + B̃a)1 −Φ(

ε∗)
P̃

� (C.2)

where 1 −Φ(ε∗)= ∫
ε>ε∗ dΦ(ε) and ε∗ = P̃/Q̃.

3. Aggregate output:

Ỹ = X̃αN1−α� (C.3)

4. Labor supply:

(1 − α) Ỹ
N
Λ̃= ψ̄� (C.4)

5. End-of-period capital stock:

K̃ = (
1 − δ(1))X̃ + Ĩ Σ

(
ε∗)

1 −Φ(
ε∗) � (C.5)

where

Σ
(
ε∗) ≡

∫
ε>ε∗

εdΦ(ε)�

6. Capacity utilization:

α
Ỹ

X̃
(1 +G)= Q̃δ′(1)� (C.6)

where

G=
∫
ε>ε∗

(
ε/ε∗ − 1

)
dΦ(ε)= Σ

(
ε∗)
ε∗ +Φ(

ε∗) − 1�

7. MarginalQ:

1 = β(1 − δe) 1
λ̄zgγ

[
δ′(1)+ 1 − δ(1)+ ζ̄G]

� (C.7)
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8. Effective capital stock used in production:

X̃ = 1 − δe
λ̄zgγ

K̃ + δeK0� (C.8)

9. Euler equation for investment goods producers:

P̃ = 1� (C.9)

10. The wage rate:

W̃ = (1 − α) Ỹ
N
� (C.10)

11. The rental rate of capital:

R̃= αỸ

X̃
� (C.11)

12. Evolution of the number of bubbly firms:

m=m(1 − δe)θ̄+ δeω� (C.12)

13. Evolution of the total value of the bubble:

B̃a = βB̃a(1 +G)(1 − δe)θ̄� (C.13)

14. The risk-free rate:

1
Rf

= β 1
gγ
(1 +G)(1 − δe)� (C.14)

15. Marginal utility for consumption:

Λ̃= 1

C̃ − hC̃/gγ
− βh

C̃gγ − hC̃ � (C.15)

For convenience, define ε∗
t = Pt/Qt = P̃t/Q̃t as the investment threshold. We use a

variable without the time subscript to denote its steady-state value in the transformed
stationary system. The following proposition characterizes the bubbly steady state.1

Proposition C1. Suppose that ω> 0 and 0< εmin <β(1 − δe)θ̄ < β. Then there exists a
unique steady-state threshold ε∗ ∈ (εmin� εmax) satisfying

∫
ε>ε∗

(
ε/ε∗ − 1

)
dΦ(ε)= 1

β(1 − δe)θ̄
− 1� (C.16)

1The bubbleless steady state can be obtained by setting B̃a = 0 andm=ω= 0. In this case, we can remove
(C.13) and (C.12).
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If the parameter values are such that

B̃a

Ỹ
=

[
ϕk − (

1 − δ(1))]ϕx
1/

[
β(1 − δe)θ̄

] −Φ(
ε∗) − α− ζ̄ϕx > 0� (C.17)

where we define

ϕk ≡
(

1 − δe
λ̄zgγ

+ δeK0

K̃

)−1

� (C.18)

ϕx ≡ α

λ̄zgγθ̄− (
1 − δ(1))β(1 − δe)θ̄− ζ̄[1 −β(1 − δe)θ̄

] � (C.19)

then there exists a unique bubbly steady-state equilibrium with the bubble–output ratio
given in (C.17). The steady-state growth rate of the bubble is given by θ̄=Rf /gγ , whereRf
is the steady-state interest rate. In addition, if

δ′(1)= α

β(1 − δe)θ̄
1
ϕx
� (C.20)

then the capacity utilization rate in this steady state is equal to 1.

Proof. In the steady state, (B.15) implies that P̃ = 1. Hence, by definition, we have ε∗ =
1/Q̃. Then by the evolution equation (B.19) of the total bubble, we obtain the steady-
state relation

1
β(1 − δe)θ̄

− 1 =G=
∫
ε>ε∗

(
ε/ε∗ − 1

)
dΦ(ε)� (C.21)

Define the expression on the right-hand side of the last equality as a function of ε∗:
G(ε∗). Then we have G(εmin) = 1

εmin
− 1 and G(εmax) = 0. Given the assumption that

εmin <β(1 − δe)θ̄, there is a unique solution ε∗ to (C.21) by the intermediate value theo-
rem. In addition, by the definition ofG, we have

G= Σ
(
ε∗)
ε∗ − [

1 −Φ(
ε∗)]�

where Σ(ε∗)= ∫
ε>ε∗ εdΦ(ε). Thus, Σ(ε∗) can be expressed as

Σ
(
ε∗) = [

G+ 1 −Φ(
ε∗)]ε∗� (C.22)

Suppose that the steady-state capacity utilization rate is equal to 1. The steady-state
version of (B.13) gives (C.7) and the steady-state version of (B.12) gives (C.6). Using these
two equations, we can derive

α
Ỹ

X̃
= Q̃

1 +G
[

gzgγ

β(1 − δe) − (
1 − δ(1)) − ζ̄G

]
� (C.23)

Substituting (C.21) into the above equation yields

Q̃X̃

Ỹ
= ϕx� (C.24)
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where ϕx is given by (C.19). To support the steady state u = 1, we use (B.12) and (C.24)
to show that condition (C.20) must be satisfied.

From (B.14), the end-of-period capital stock to the output ratio in the steady state
satisfies

K̃

Ỹ
= ϕk X̃

Ỹ
� (C.25)

where ϕk is given by (C.18). Then from (B.11), we can derive the steady-state relation

Ĩ

Ỹ
= 1 −Φ(

ε∗)
Σ

(
ε∗)

[
ϕk − (

1 − δ(1))]X̃
Ỹ

= 1 −Φ(
ε∗)[

G+ 1 −Φ(
ε∗)]

[
ϕk − (

1 − δ(1))]Q̃X̃
Ỹ

(C.26)

=
[
1 −Φ(

ε∗)][ϕk − (
1 − δ(1))]ϕx

G+ 1 −Φ(
ε∗) �

where the second line follows from (C.22) and ε∗ = 1/Q̃, and the last line follows from
(C.24). After substituting (C.21) into the above equation, we solve for 1 −Φ(ε∗):

1 −Φ(
ε∗) = 1/

[
β(1 − δe)θ̄

] − 1

(Ĩ/Ỹ )−1
[
ϕk − (

1 − δ(1))]ϕx − 1
� (C.27)

From (B.8), the steady-state total value of bubble to GDP ratio is given by

B̃a

Ỹ
= Ĩ

Ỹ

1
1 −Φ(

ε∗) − α− ζ̄ Q̃X̃
Ỹ
�

Substituting (C.21), (C.26), and (C.24) into the above equation yields (C.17). We require
B̃a/Ỹ > 0. By (23) and (34), the growth rate of bubbles of the surviving firms in the steady
state is given by θ̄=Rf /gγ . �

Appendix D: Log-linearized system

We eliminate equations for W̃t and R̃t . The log-linearized system for 13 variables
{C̃t� Ĩt � Ỹt �Nt� K̃t�ut� Q̃t� X̃t� P̃t �mt� B̃at �Rf t� Λ̃t}, including two growth rates, are summa-
rized as follows.

1. Resource constraint:

Ŷt = C̃

Ỹ
Ĉt + Ĩ

Ỹ
Ît � (D.1)

2. Aggregate investment:

Ît = α

α+ ζ̄ϕx + B̃a/Ỹ Ŷt +
ζ̄ϕx

α+ ζ̄ϕx + B̃a/Y (ζ̂t + Q̂t + X̂t)
(D.2)

+ B̃a/Ỹ

α+ ζ̄ϕx + B̃a/Ỹ B̂
a
t −με̂∗

t − P̂t �
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where

μ= φ
(
ε∗)ε∗

1 −Φ(
ε∗) � ε̂∗

t = P̂t − Q̂t � (D.3)

3. Aggregate output:

Ỹt = α(ût + X̂t)+ (1 − α)N̂t � (D.4)

4. Labor supply:

Λ̂t + Ŷt − N̂t = ψ̂t � (D.5)

5. End of period the capital stock:

K̂t+1 = −δ
′(1)
ϕk

ût + 1 − δ(1)
ϕk

X̂t +
(

1 − 1 − δ(1)
ϕk

)(
Ît − μ

ϕG
ε̂∗
t

)
� (D.6)

where

ϕG ≡ −1 −Φ(
ε∗)

G
− 1� (D.7)

6. Capacity utilization:

Ŷt − X̂t +
[
1 −β(1 − δe)θ̄

]
ϕGε̂

∗
t = Q̂t +

(
1 + δ′′(1)

δ′(1)

)
ût � (D.8)

7. MarginalQ:

Q̂t = Et(Λ̂t+1 − Λ̂t)+Et(Q̂t+1 − ĝzt+1 − ĝγt+1)

+ β(1 − δe)δ′(1)
λ̄zgγ

δ′′(1)
δ′(1)

Etût+1 (D.9)

+ ζ̄β(1 − δe)G
λ̄zgγ

Et
(
ζ̂t+1 +ϕGε̂∗

t+1
)
�

8. Effective capital stock:

X̂t = 1 − δe
λ̄zgγ

ϕk(K̂t − ĝzt − ĝγt)� (D.10)

9. Euler equation for investment goods producers:

P̂t = Et
[
(1 +β)Ωg2

γλ̄
2
zÎt +Ωλ̄2

zg
2
γ(ĝγt + ĝzt)

(D.11)
−Ωλ̄2

zg
2
γÎt−1 −βΩλ̄2

zg
2
γ(Ît+1 + ĝzt+1 + ĝγt+1)

]
�

10. Evolution of the number of bubbly firms:

m̂t = (1 − δe)θ̄m̂t−1 + (1 − δe)θ̄θ̂t−1� (D.12)
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11. Evolution of the total value of the bubble:

B̂at = Et
(
Λ̂t+1 − Λ̂t + B̂at+1

) + [
1 −β(1 − δe)θ̄

]
ϕGEtε̂

∗
t+1

(D.13)

+ 1 − (1 − δe)θ̄
(1 − δe)θ̄

Etm̂t+1�

12. The risk-free rate:

−R̂f t =Et(Λ̂t+1 − Λ̂t − ĝγt+1)+ [
1 −β(1 − δe)Rf /gγ

]
ϕGEtε̂

∗
t+1� (D.14)

13. Marginal utility for consumption:

Λ̂t = gγ

gγ −βh
[
− gγ

gγ − hĈt +
h

gγ − h(Ĉt−1 − ĝγt)
]

(D.15)

− βh

gγ −βhEt
[
− gγ

gγ − h(Ĉt+1 + ĝγt+1)+ h

gγ − hĈt
]
�

14. The growth rate of consumption goods:

ĝγt = α

1 − αλ̂zt +
(
λ̂at + Âmt − Âmt−1

)
� (D.16)

15. The growth rate of the investment goods price:

ĝzt = λ̂zt � (D.17)

In the above system,G is determined by (C.13),

G= 1
β(1 − δe)θ̄

− 1� (D.18)

(1 − Φ(ε∗)) is given by (C.27), and δ′(1) satisfies (C.20). The log-linearized shock pro-
cesses are listed below.

1. The permanent technology shock:

λ̂at = ρaλ̂at−1 + εat � (D.19)

2. The transitory technology shock:

Âmt = ρamÂmt−1 + εam�t � (D.20)

3. The permanent investment-specific technology shock:

λ̂zt = ρzλ̂zt−1 + εzt � (D.21)

4. The labor supply shock:

ψ̂t = ρψψ̂t−1 + εψt� (D.22)
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5. The financial shock:

ζ̂t = ρζζ̂t−1 + εζt � (D.23)

6. The sentiment shock:

θ̂t = ρθθ̂t−1 + εθt � (D.24)

Appendix E: Business cycle moments

To evaluate our model performance, we present in Table S1 the baseline model’s predic-
tions regarding standard deviations, correlations with output, and serial correlations of
output, consumption, investment, hours, and stock prices. This table also presents re-
sults for four estimated comparison models discussed in the paper. The model moments
are computed using the simulated data from the estimated model when all shocks are
turned on. We take the posterior modes as parameter values. Both simulated and actual
data are in logs and are HP-filtered.

Appendix F: Robustness

F.1 Extended model with consumer sentiment index

Table S2 reports the prior and posterior distributions of estimated parameters in the
extended model of Section 5, with the consumer sentiment index as one of the observa-
tion series. The parameters {aj�bj}5

j=1 in the table are coefficients in the equation for the
sentiment shock and in the observation equation of the consumer sentiment index. The
variable σerr represents the standard deviation of the measurement error.

F.2 Priors

In our baseline model of the paper, we choose 10 percent as the prior mean ofσθ because
we know that the stock market volatility is very high. To see if our result is robust to a
smaller prior mean of σθ, we set the prior as Inv-Gamma with mean 0�01 and standard
deviation infinite. We redo Bayesian estimation and report estimation results in Table S3.
We find that these results are very similar to those in the baseline estimation.

F.3 A hybrid model

Our baseline model has abstracted away from many other potentially important shocks
such as news shocks or uncertainty shocks. Thus, it is possible that the sentiment
shock is not important at all in explaining stock prices and real variables if other
shocks are taken into account. To examine this possibility, we follow the methodol-
ogy of Ireland (2004) and combine the DSGE model with the VAR model. We then
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Table S1. Business cycles statistics.

Y C I N SP P

Standard Deviations (%)
U.S. data 1�70 0�93 4�19 1�79 10�82 1�11
Baseline model 1�84 1�46 4�29 1�30 10�58 1�06
No stock price 1�15 0�95 3�04 1�11 1�32 1�22
No sentiment 1�50 1�40 3�32 1�57 10�20 2�49
No bubble 1�77 1�65 4�10 1�87 10�28 2�61
Extended 2�46 1�94 5�35 1�25 12�20 1�12

Standard Deviations Relative to Y
U.S. data 1�00 0�55 2�47 1�05 6�36 0�65
Baseline model 1�00 0�79 2�32 0�70 5�74 0�58
No stock price 1�00 0�83 2�63 0�96 1�15 1�06
No sentiment 1�00 0�93 2�21 1�04 6�78 1�65
No bubble 1�00 0�93 2�32 1�06 5�81 1�48
Extended 1�00 0�79 2�17 0�51 4�96 0�45

First-Order Autocorrelations
U.S. data 0�90 0�90 0�87 0�93 0�77 0�86
Baseline model 0�89 0�93 0�79 0�78 0�76 0�85
No stock price 0�83 0�89 0�73 0�77 0�72 0�88
No sentiment 0�91 0�91 0�83 0�74 0�72 0�81
No bubble 0�94 0�94 0�87 0�78 0�72 0�75
Extended 0�91 0�94 0�84 0�84 0�76 0�86

Correlation With Y
U.S. data 1�00 0�93 0�97 0�82 0�42 −0�13
Baseline model 1�00 0�94 0�88 0�61 0�39 −0�07
No stock price 1�00 0�88 0�80 0�68 0�45 −0�08
No sentiment 1�00 0�85 0�74 0�56 0�06 −0�14
No bubble 1�00 0�90 0�71 0�52 0�08 0�07
Extended 1�00 0�96 0�91 0�64 0�50 −0�08

Note: The model moments are computed using the simulated data (20,000 periods) from the estimated model at the poste-
rior mode. All series are logged and detrended with the HP filter. The columns labeled Y , C, I, N , SP, and P refer, respectively,
to output, consumption, investment, hours worked, the stock price, and the relative price of investment goods. “No bubble”
corresponds to the model without bubbles. “No sentiment” corresponds to the baseline model without sentiment shocks. “No
stock price” corresponds to the baseline model without using the stock price data in estimation. “Extended” corresponds to
the model in Section 5.

estimate this hybrid model using Bayesian methods.2 Following Ireland (2004), we
now shut down all the shocks in the baseline model except the sentiment shock
and introduce four measurement errors into the measurement equations for the data
{�PsData

t ��CData
t ��IData

t � lnNData}. Specifically, let

⎡
⎢⎢⎢⎣

�PsData
t

�CData
t

�IData
t

lnNData

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�P̂st

�Ĉt

�Ît

N̂t

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎣

ln(gγ)
ln(gγ)
ln(gγ)

ln(N̄)

⎤
⎥⎥⎦ + νt � (F.1)

2We thank Tao Zha for suggesting that we conduct this analysis.
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Table S2. Priors and posteriors of estimated parameters in the extended model.

Prior Distribution Posterior Distribution

Parameter Distr. Mean Std. Dev. Mode Mean 5% 95%

h Beta 0�33 0�24 0�57 0�56 0�50 0�63
Ω Gamma 2 2 0�03 0�04 0�01 0�06
δ′′/δ′ Gamma 1 1 15�66 15�57 11�64 19�43
ζ̄ Beta 0�3 0�1 0�25 0�25 0�21 0�29
μ Gamma 2 2 2�64 2�74 2�34 3�15

f1 Gamma 1 1 0�08 0�07 0�01 0�13
f2 Gamma 1 1 5�26 6�13 3�72 8�50
f3 Gamma 1 1 0�67 0�62 0�00 1�10
a1 Gamma 10 3 6�16 6�68 3�45 9�72
a2 Gamma 10 3 13�48 14�75 9�06 19�96
a3 Gamma 10 3 8�20 8�84 4�99 12�2
a4 Gamma 10 3 5�36 5�58 3�29 7�97
a5 Gamma 10 3 3�89 3�98 2�23 5�56
b1 Gamma 2 2 0�25 0�25 0�19 0�30
b2 Gamma 2 2 2�91 2�65 0�62 4�52
b3 Gamma 2 2 3�79 3�63 1�69 5�36
b4 Gamma 2 2 1�66 2�19 0�58 3�81
b5 Gamma 2 2 0�38 0�93 0�08 1�83

ρa Beta 0�5 0�2 0�68 0�67 0�52 0�80
ρam Beta 0�5 0�2 0�81 0�80 0�73 0�87
ρz Beta 0�5 0�2 0�40 0�38 0�26 0�51
ρθ Beta 0�5 0�2 0�96 0�95 0�94 0�96
ρψ Beta 0�5 0�2 0�96 0�96 0�95 0�97
ρζ Beta 0�5 0�2 0�97 0�96 0�95 0�98

σa (%) Inv-Gamma 1 Inf 0�74 0�75 0�59 0�91
σam (%) Inv-Gamma 1 Inf 0�66 0�67 0�56 0�77
σz (%) Inv-Gamma 1 Inf 0�59 0�60 0�53 0�67
σθ (%) Inv-Gamma 1 Inf 13�70 13�80 10�28 17�05
σψ (%) Inv-Gamma 1 Inf 0�80 0�81 0�71 0�90
σζ (%) Inv-Gamma 1 Inf 0�76 0�70 0�39 0�97
σerr (%) Inv-Gamma 1 Inf 8�63 8�76 7�87 9�71

where νt is the vector that contains four measurement errors, gγ is the gross growth rate
of output, and N̄ is the average hours in the data. Following Ireland (2004), we assume
that the measurement errors νt follow a VAR(1) process

νt = Aνt−1 +Bε̂ν�t � (F.2)

where A is the coefficient matrix and B is assumed to be lower triangular such that the
innovations in ε̂ν�t are orthogonal to each other.

The measurement errors in (F.2) can be considered as a combination of all omit-
ted structural shocks in our baseline model and allow for potential model misspecifi-
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Table S3. Prior and posterior distributions of parameters.

Prior Distribution Posterior Distribution

Parameter Distr. Mean Std. Dev. Mode Mean 5% 95%

h Beta 0�33 0�24 0�54 0�54 0�49 0�61
Ω Gamma 2 2 0�03 0�03 0�01 0�06
δ′′/δ′ Gamma 1 1 11�44 11�92 8�33 15�49
ζ̄ Beta 0�3 0�1 0�29 0�30 0�22 0�36
μ Gamma 2 2 2�57 2�60 2�12 3�19

f1 Gamma 1 1 0�05 0�04 0�01 0�07
f2 Gamma 1 1 4�73 4�82 2�54 7�08
f3 Gamma 1 1 0�42 0�32 0�00 0�56

ρa Beta 0�5 0�2 0�96 0�97 0�94 0�99
ρam Beta 0�5 0�2 0�97 0�96 0�95 0�98
ρz Beta 0�5 0�2 0�36 0�34 0�22 0�46
ρθ Beta 0�5 0�2 0�93 0�92 0�90 0�95
ρψ Beta 0�5 0�2 0�99 0�98 0�96 0�99
ρζ Beta 0�5 0�2 0�88 0�87 0�81 0�94

σa (%) Inv-Gamma 0�01 Inf 0�23 0�23 0�18 0�29
σam (%) Inv-Gamma 0�01 Inf 1�03 1�04 0�93 1�16
σz (%) Inv-Gamma 0�01 Inf 0�59 0�60 0�54 0�67
σθ (%) Inv-Gamma 0�01 Inf 17 �85 19�46 11�65 26�38
σψ (%) Inv-Gamma 0�01 Inf 0�81 0�82 0�72 0�93
σζ (%) Inv-Gamma 0�01 Inf 0�77 0�84 0�42 1�21

cations. We allow the measurement errors to be flexible enough so that the data are

not necessarily driven by the sentiment shock. The idea is that if the sentiment shock

is not the driving force, then (F.1) and (F.2) form a first-order Bayesian VAR system and

the measurement errors should be important in explaining fluctuations in the data of

{�PsData
t ��CData

t ��IData
t � lnNData}. On the other hand, if the baseline model is correctly

specified and the sentiment shock is the main source of fluctuations, then the estimated

measurement errors will be unimportant.

The variance decomposition shows that the sentiment shock remains the single

most important factor accounting for the stock price variation, although its importance

is somewhat reduced. It explains about 82 percent of the variation in the stock prices. It

still accounts for significant fractions of fluctuations in investment, consumption, and

output, explaining about 26, 38, and 35 percent, respectively. As in the baseline model,

the sentiment shock is not important in explaining the fluctuation in hours. We also

find that the estimates of the common parameters in the hybrid model are very similar

to those in the baseline model. The smoothed sentiment shock is still highly correlated

with the consumer sentiment data; the correlation is about 0�73. These results suggest

that the importance of the sentiment shock is robust to the model variation and specifi-

cation of different shocks.
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